Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	54	54.62
2	13 holes	9.4	3.101	1.494	47	47.54
3	10 holes	7.0	2.676	1.290	40	40.46
4	7 holes	4.8	2.216	1.068	32	32.37
5	5 holes	2.9	1.722	0.830	24	24.28

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 35.842 Intercept(b): -5.713 Correlation Coefficient(r): 0.9997

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	62	62.71
2	13 holes	9.2	3.068	1.478	52	52.60
3	10 holes	7.0	2.676	1.290	45	45.52
4	7 holes	4.6	2.169	1.047	36	36.41
5	5 holes	2.8	1.693	0.816	28	28.32

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	13.0	3.647	1.757	56	56.64
2	13 holes	10.2	3.230	1.557	50	50.57
3	10 holes	7.8	2.825	1.361	45	45.52
4	7 holes	5.0	2.262	1.090	37	37.42
5	5 holes	3.0	1.752	0.844	31	31.36

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.785 Intercept(b): 7.574 Correlation Coefficient(r): 0.9995

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.475	1.674	52	52.60
2	13 holes	9.6	3.134	1.510	47	47.54
3	10 holes	7.0	2.676	1.290	38	38.44
4	7 holes	4.6	2.169	1.046	30	30.34
5	5 holes	2.8	1.693	0.816	22	22.25

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 35.713 Intercept(b): -7.017 Correlation Coefficient(r): 0.9994

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	53	53.61
2	13 holes	9.6	3.134	1.510	46	46.53
3	10 holes	7.2	2.714	1.308	39	39.45
4	7 holes	4.4	2.122	1.023	31	31.36
5	5 holes	3.0	1.752	0.844	25	25.29

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.736 Intercept(b): -1.473 Correlation Coefficient(r): 0.9995

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.5	3.612	1.741	57	58.24
2	13 holes	9.5	3.149	1.517	50	51.09
3	10 holes	7.4	2.779	1.339	44	44.96
4	7 holes	4.8	2.238	1.079	35	35.76
5	5 holes	2.8	1.710	0.824	28	28.61

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 32.792 Intercept(b): 1.098 Correlation Coefficient(r): 0.9993

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.590	1.730	62	62.71
2	13 holes	9.2	3.068	1.478	52	52.60
3	10 holes	7.0	2.676	1.290	45	45.52
4	7 holes	4.6	2.169	1.047	36	36.41
5	5 holes	2.8	1.693	0.816	28	28.32

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.6	3.627	1.748	54	55.17
2	13 holes	9.8	3.198	1.541	48	49.04
3	10 holes	7.5	2.798	1.348	42	42.91
4	7 holes	5.0	2.285	1.101	36	36.78
5	5 holes	2.9	1.740	0.839	29	29.63

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.982 Intercept(b): 5.901 Correlation Coefficient(r): 0.9995

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.9	3.525	1.698	53	54.15
2	13 holes	9.5	3.149	1.517	47	48.02
3	10 holes	7.0	2.703	1.303	40	40.87
4	7 holes	4.7	2.215	1.068	32	32.70
5	5 holes	2.8	1.710	0.824	24	24.52

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):33.930 Intercept(b): -3.447 Correlation Coefficient(r): 0.9993

High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/02/2015

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1022 Ta(K) : 288

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.8	3.655	1.761	54	55.17
2	13 holes	9.8	3.198	1.541	48	49.04
3	10 holes	7.2	2.742	1.321	41	41.89
4	7 holes	4.5	2.167	1.045	33	33.72
5	5 holes	2.9	1.740	0.839	27	27.59

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m): 30.101 Intercept(b): 2.309 Correlation Coefficient(r): 0.9995

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration:	29 December 2014
Brand of Test Meter:	Davis
Model:	Weather Wizard III (s/n: WE90911A30)
Location:	ASR5
Procedures:	
1. Wind Still Test:	The wind speed sensor was hold by hand until it keep still
2.Wind Speed Test:	The wind meter was on-site calibrated against the Anemometer
3.Wind Direction Test:	The wind meter was on-site calibrated against the marine compass at four directions
Results:	

Wind Still Test

	Wind Speed (m/s)	
á	0.00	

Wind Speed Test

Davis (m/s)	Anemomete (m/s)
1.4	1.6
1.9	1.7
2.4	2.5

Wind Direction Test

Davis (o)			Marine Compass (o)		
	271		270		
, E	0	· £	0		
	91	er de post	90		
	179	*	180		

Calibrated by:

Yeung Ping Fai

(Technical Officer)

Checked by:

Ho Kam Fat

(Senior Technical Officer)

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C146966

證書編號

校正證書

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-2877) Date of Receipt / 收件日期: 12 November 2014

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號

AM-4201

Serial No./編號

AF.27513

Supplied By / 委託者 Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 November 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

CF Leung Project Engineer

Certified By

核證

Date of Issue

18 November 2014

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab(a)suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C146966

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

Test procedure: MA130N.

5. Results:

Air Velocity

Applied	UUT	Measured Correction		
Value	Reading	Value Measurement Uncertainty		
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor
2.0	1.7	+0.3	0.2	2.0
4.1	3.8	+0.3	0.3	2.0
6.1	5.8	+0.3	0.3	2.0
8.0	7.8	+0.2	0.3	2.0
10.0	9.9	+0.1	0.4	2.0

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c'o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c'o 香港新界屯門與安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab/a/suncreation.com Website/網址: www.suncreation.com

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 2454	Ta (K) - Pa (mm) -	293 - 758.19
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.4740 1.0340 0.9240 0.8820 0.7270	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.7	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0103 1.0061 1.0040 1.0028 0.9976	0.6854 0.9730 1.0866 1.1370 1.3722	1.4245 2.0146 2.2524 2.3623 2.8491		0.9958 0.9916 0.9895 0.9884 0.9832	0.6755 0.9590 1.0709 1.1206 1.3524	0.8791 1.2433 1.3900 1.4579 1.7583
Qstd slor intercept coefficie	(b) = ent (r) =	2.07593 -0.00102 0.99996		Qa slope intercept coefficie	(b) =	1.29991 -0.00063 0.99996
y axis =	SQRT[H2O(F	Pa/760) (298/7	[a)]	y axis =	SQRT [H2O (T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Performance Check of Turbidity Meter

Equipment Ref. No.	: ET/0505/011	Manufacturer	· F	-IACH

Model No. : 2100Q Serial No. : 12060 C 018534

Date of Calibration : 05/01/2015 Due Date : 04/04/2015

Ref. No. of Turbidity Standard used (4000NTU) 005/6.1/001/7

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	19.8	-1.00
100	104	4.00
800	788	-1.50

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

A .	~ .	•
Accentance	('rita	MIO
Acceptance		Ha
· · · · · · · · · · · · · · · · · · ·		

Difference : -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Prepared by: Checked by:

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/006

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100554

Date of Calibration

17/12/2014

Calibration Due Date

16/03/2015

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

		Temperature (°C)				
Reference Thermometer readir	ng Measured	20.0	Corrected	19.4		
DO Meter reading	Measured	19.4	Difference	0.0		

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/9	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/001/32	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.15	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.15	20.35	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.15	10.20	
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02463	0.02451	
Average Normality (N) of Na ₂ S ₂ O ₃ s) of Na ₂ S ₂ O ₃ solution (N) 0.02457			
Acceptance criteria, Deviation		Less than <u>+</u> 0.001N		

Calculation:

Normality of $Na_2S_2O_3$, $N = 0.25 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)	2		5		10	
Trial	1	2	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.40	22.80	0.00	6.60	10.30
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.40	22.80	29.30	6.60	10.30	14.00
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.40	11.40	6.50	6.60	3.70	3.70
Dissolved Oxygen (DO), mg/L	7.52	7.52	4.29	4.35	2.44	2.44
Acceptance criteria, Deviation	Less than	ı + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L

Calculation:

DO $(mg/L) = V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L			Winkler Titration result *, mg/L			Difference (%) of DO
ruiging time, timi	1	2	Average	1	2	Average	Content
2	7.61	7.20	7.41	7.52	7.52	7.52	1.47
5	4.28	4.75	4.52	4.29	4.35	4.32	4.52
10	2.50	2.49	2.50	2.44	2.44	2.44	2.43
Linea	r regression	coefficient		0.9978			

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point	Checking
------------	----------

DO meter reading, mg/L	0.00

Salinity Checking

Reagent No. of NaCl (10ppt)	CPE/012/4.7/002/29	Reagent No. of NaCl (30ppt)	CPE/012/4.8/002/29

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10)		30
Trial	1	2	1	2
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.90	23.80	34.40
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.90	23.80	34.40	44.90
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11,90	11.90	10.60	10.50
Dissolved Oxygen (DO), mg/L	7.85	7.85	6.99	6.93
Acceptance criteria, Deviation	Less than -	+ 0.3mg/L	Less tha	n + 0.3mg/L

Calculation:

 $DO (mg/L) = V \times N \times 8000/298$

Salinity (ppt)	DO	meter reading,	mg/L	Winkler	Titration resu	lt**, mg/L	Difference (%) of DO
Samity (ppt)	1	2	Average	1	2	Average	Content
10	7.68	7.78	7.73	7.85	7.85	7.85	1.54
30	6.88	6.89	6.89	6.99	6.93	6.96	1.01

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : $< 0.5 \, ^{\circ}\text{C}$
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within \pm 5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by	:	Approved by:	

CEP/012/W

Performa	nce Check of	f Salinity Meter
Equipment Ref. No. : <u>ET/EW</u>	V/008/006	Manufacturer : <u>YSI</u>
Model No. : Pro 20	30	Serial No. : <u>12A 100554</u>
Date of Calibration : 17/12/2	2014	Due Date : <u>16/03/2015</u>
Ref. No. of Salinity Stand	dard used (30ppt)	S/001/5
Salinity Standard	Measured Salinit	Difference %
(ppt) 30.0	(ppt) 30.5	1.7
(*) Difference (%) = (Measured s	 Salinity – Salinity Sta	andard value) / Salinity Standard value x 100
Acceptance Criteria	Difference : -10 %	o to 10 %
		ly * with the specified requirements or use. Measurements are traceable to
Checked by:	Арр	proved by:

Internal Calibra	tion & Performance	Check of pH Me	eter
Equipment Ref. No.: ET/EW/007/		: HANNA	
Model No. : HI 8314	Serial No.	: 8246095	
Date of Calibration : 07/01/2015	Calibration Due		15
Liquid Junction Error			
Primary Standard Solution Used : <u>F</u>	hosphate F	Ref No. of Primary Solu	tion: 003/5.2/001/20
Temperature of Solution : 2	0.0	∆p⊢	H _½ = +0.08
pH value of diluted buffer : 6	.79		S) = 6.881
 ∆pH = pH(S) - pH of diluted buffer = 0	.091 (Observe	d Deviation)	
Liquid Junction Error (ΔpH_i) = $\Delta pH - \Delta p$		······································	
Shift on Stirring			
pH of buffer solution (with stirring), pH_s	= 6.91		
Shift on stirring, $\triangle pH_s = pH_s - pH(S) - \triangle pH(S)$	$bH_{j} = 0.018$		
Noise			
		_	
Noise, ∆pH _n = difference between max	and min reading : 0.00)	
Verification of ATC			
Ref. No. of reference thermometer use	4· FT/	0521/008	
Temperature record from the reference	***************************************		oc
Temperature record from the ATC (T_{ATC}	and the second s		<u></u> °с
Temperature Difference, $ T_R - T_{ATC} $	0.0		—∘c
Temperature Difference, TTR - TATCT	<u>0.0</u>		
Acceptance Criteria			
Performance Charac	eteristic	Acceptable Range	
Liquid Junction Error Δ	рНj	≤0.05	
	oHs	≤0.02	
	oHn	≤0.02	
Verifcation of ATC To	emperature Difference	≤0.5°C	
The pH meter complies * / does not unacceptable * for use. Measurements * Delete as appropriate			emed acceptable * /
Calibrated by :	Che	ecked by :	ele

CPE/015/W

Equipment Ref. No.: ET/EW/0	07/005	Manufactur	er	: HANNA	
Model No. : HI 8314		Serial No.		: 8246095	
Date of Calibration : 07/02/201	15	Calibration			
Liquid Junction Error				·	
Primary Standard Solution Used:	Phosphate)	_ Ref No. c	of Primary Solution	n: <u>003/5.2/001/</u> 2
Temperature of Solution:	20.0			∆рН ½	= +0.08
pH value of diluted buffer :	6.79		_	pH (S) =	= 6.881
∆pH = pH(S) - pH of diluted buffer =	0.091	(Ob	- served Deviat	ion)	
Liquid Junction Error ($\triangle pH_j$) = $\triangle pH$ -					
Shift on Stirring				LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	
pH of buffer solution (with stirring), p	oH _s =	6.90		_	
Shift on stirring, $\triangle pH_s = pH_s - pH(S)$	- ΔpH _j =	0.008	3		
Noise					
Noise, ΔpH_n = difference between n	nax and min re	eading ·	0.00		
Verification of ATC					
Ref. No. of reference thermometer u	used:		ET/0521/00	8	
Temperature record from the referei	nce thermome	, (40.0		[−] °C
		eter (T _R):	19.9		•
Temperature record from the ATC (eter (T _R):	20.0		-°C
	Γ _{ΑΤC}):	eter (I _R):			
Temperature record from the ATC (Temperature Difference, T _R - T _{ATC} Acceptance Criteria	Γ _{ΑΤC}):	eter (T _R):	20.0		o c
Temperature Difference, T _R - T _{ATO} Acceptance Criteria	Γ _{ΑΤΟ}): .	eter (T _R):	20.0	table Range	o c
Temperature Difference, T _R - T _{ATC}	Γ _{ΑΤΟ}): .	eter (T _R):	20.0 -0.1	table Range ≤0.05	o c
Temperature Difference, T _R - T _{ATO} Acceptance Criteria Performance Cha	T _{ATC}): . aracteristic	eter (T _R):	20.0 -0.1		o c
Temperature Difference, T _R - T _{ATO} Acceptance Criteria Performance Cha	Γ _{ATC}): : aracteristic ΔpHj	eter (T _R):	20.0 -0.1	≤0.05 ≤0.02 ≤0.02	o c
Temperature Difference, T _R - T _{ATO} Acceptance Criteria Performance Cha Liquid Junction Error Shift on Stirring	Γ _{ATC}): aracteristic ΔpHj ΔpHs		20.0 -0.1	≤0.05 ≤0.02	oc
Acceptance Criteria Performance Cha Liquid Junction Error Shift on Stirring Noise Verifcation of ATC The pH meter complies * / does runacceptable * for use. Measurement	T _{ATC}): aracteristic ΔpHj ΔpHs ΔpHn Temperature	e Difference with the specif	20.0 -0.1 Accep	≤0.05 ≤0.02 ≤0.02 ≤0.5°C	° c - ° c -
Acceptance Criteria Performance Cha Liquid Junction Error Shift on Stirring Noise Verification of ATC The pH meter complies * / does r	T _{ATC}): aracteristic ΔpHj ΔpHs ΔpHn Temperature	e Difference with the specif	20.0 -0.1 Accep	≤0.05 ≤0.02 ≤0.02 ≤0.5°C	° c - ° c -