
#### Report



Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Fifteenth Monthly Environmental Monitoring & Audit (EM&A) Report

11 February 2015

**Environmental Resources Management** 

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com





# Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Fifteenth Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330\_15th Monthly EM&A\_20150211.doc

# **Environmental Resources Management**

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project No                                                                                                                                              | 0:      |          |                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------------|--|--|
| DBJV                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 021233                                                                                                                                                  | 0       |          |                |  |  |
| This document presents the Fifteenth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.                                                                                                                                                                                                                                                                                                                                           | Date: 11 February 2015 Approved by:  Mr Craig Reid Partner Certified by:                                                                                |         |          |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mr Jovy<br>ET Leade                                                                                                                                     |         |          |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |         |          |                |  |  |
| 15 <sup>th</sup> Monthly EM&A Report                                                                                                                                                                                                                                                                                                                                                                                                                                            | VAR                                                                                                                                                     | JT      | CAR      | 11/02/15       |  |  |
| Revision Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ву                                                                                                                                                      | Checked | Approved | Date           |  |  |
| This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.  We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. | Distribution  Internal  Public  Confidential  Distribution  Internal  OHSAS 18001-2007 Certificate No. OHS 51595  Section 2008 Certificate No. FS 32518 |         |          | No. OHS 515956 |  |  |





Ref.: HYDHZMBEEM00\_0\_2713L.15

12 February 2015

**AECOM** 

By Fax (2293 6300) and By Post

Supervising Officer Representative's Office No. 8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong

Attention: Messrs. Edwin Ching / Andy Westmoreland

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)

**Environmental Project Office for the** 

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,

and Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section Monthly EM&A Report for January 2015 (EP-354/2009/C)

Reference is made to the Monthly Environmental Monitoring & Audit (EM&A) Report (for January 2015) certified by the ET Leader (ET's ref.: "0212330\_15th Monthly EM&A\_20150211.doc" dated 11 February 2015) provided to us via e-mail on 11 February 2015.

We are pleased to inform you that we have no adverse comments on the captioned monthly EM&A report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/C.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any query.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

Faffandlong

c.c. HyD – Mr. Stephen Chan (By Fax: 3188 6614)

HyD – Mr. Matthew Fung (By Fax: 3188 6614)

AECOM - Mr. Conrad Ng (By Fax: 3922 9797)

ERM – Mr. Jovy Tam (By Fax: 2723 5660)

Dragages – Bouygues JV – Mr. C. F. Kwong (By Fax: 2293 7499)

Internal: DY, YH, SLUI, ENPO Site

O:\Projects\HYDHZMBEEM00\02 Proj Mgt\02 Corr\HYDHZMBEEM00 0 2713L.15.doc

#### TABLE OF CONTENTS

|     | EXECUTIVE SUMMARY                                             | I   |
|-----|---------------------------------------------------------------|-----|
| 1   | INTRODUCTION                                                  | 1   |
| 1.1 | BACKGROUND                                                    | 1   |
| 1.2 | SCOPE OF REPORT                                               | 2   |
| 1.3 | ORGANIZATION STRUCTURE                                        | 2   |
| 1.4 | SUMMARY OF CONSTRUCTION WORKS                                 | 2   |
| 2   | EM&A RESULTS                                                  | 4   |
| 2.1 | AIR QUALITY                                                   | 4   |
| 2.2 | WATER QUALITY MONITORING                                      | 6   |
| 2.3 | DOLPHIN MONITORING                                            | 7   |
| 2.4 | EM&A SITE INSPECTION                                          | 12  |
| 2.5 | Waste Management Status                                       | 13  |
| 2.6 | ENVIRONMENTAL LICENSES AND PERMITS                            | 13  |
| 2.7 | IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES    | 15  |
| 2.8 | SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA  | NCE |
|     | LIMIT                                                         | 15  |
| 2.9 | SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL |     |
|     | PROSECUTIONS                                                  | 15  |
| 3   | FUTURE KEY ISSUES                                             | 16  |
| 3.1 | CONSTRUCTION ACTIVITIES FOR THE COMING MONTH                  | 16  |
| 3.2 | KEY ISSUES FOR THE COMING MONTH                               | 16  |
| 3.3 | MONITORING SCHEDULE FOR THE COMING MONTH                      | 16  |
| 4   | CONCLUSIONS AND RECOMMENDATIONS                               | 17  |
| 4.1 | Conclusions                                                   | 17  |

APPENDIX A PROJECT ORGANIZATION

APPENDIX B CONSTRUCTION PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D ACTION AND LIMIT LEVELS

APPENDIX E CALIBRATION CERTIFICATE

APPENDIX F MONITORING SCHEDULE

APPENDIX G AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WATER QUALITY MONITORING RESULTS

APPENDIX J IMPACT DOLPHIN MONITORING

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE AND

**COMPLAINT** 

APPENDIX M WASTE FLOW TABLE

#### **EXECUTIVE SUMMARY**

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B* and *EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Fifteenth Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 January 2015 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

#### Marine-based Works

• Rock Bund Deposition for Marine Sheetpile Remedial Works at Works Area – Portion N-A.

#### Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area – Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 11 sessions

1-hour TSP Monitoring 11 sessions

Impact Water Quality Monitoring 13 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. Rock bund deposition for marine sheet pile remedial works commenced on 5 January 2015 during day time. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month.

#### Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

No Action Level or Limit Level of air quality exceedances were recorded in the water quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level of water quality exceedances were recorded in the water quality monitoring of this reporting month.

#### Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

No environmental complaint was received in this reporting period.

No environmental summons was received in this reporting period.

#### Reporting Change

There was no reporting change required in the reporting period.

#### Upcoming Works for the Next Reporting Month

Works to be undertaken in the next monitoring period of February 2015 include the following:

#### Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area – Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

#### Marine-based Works

 Rock bund deposition for marine sheet pile remedial works at Marine Works Area - Portion N-A.

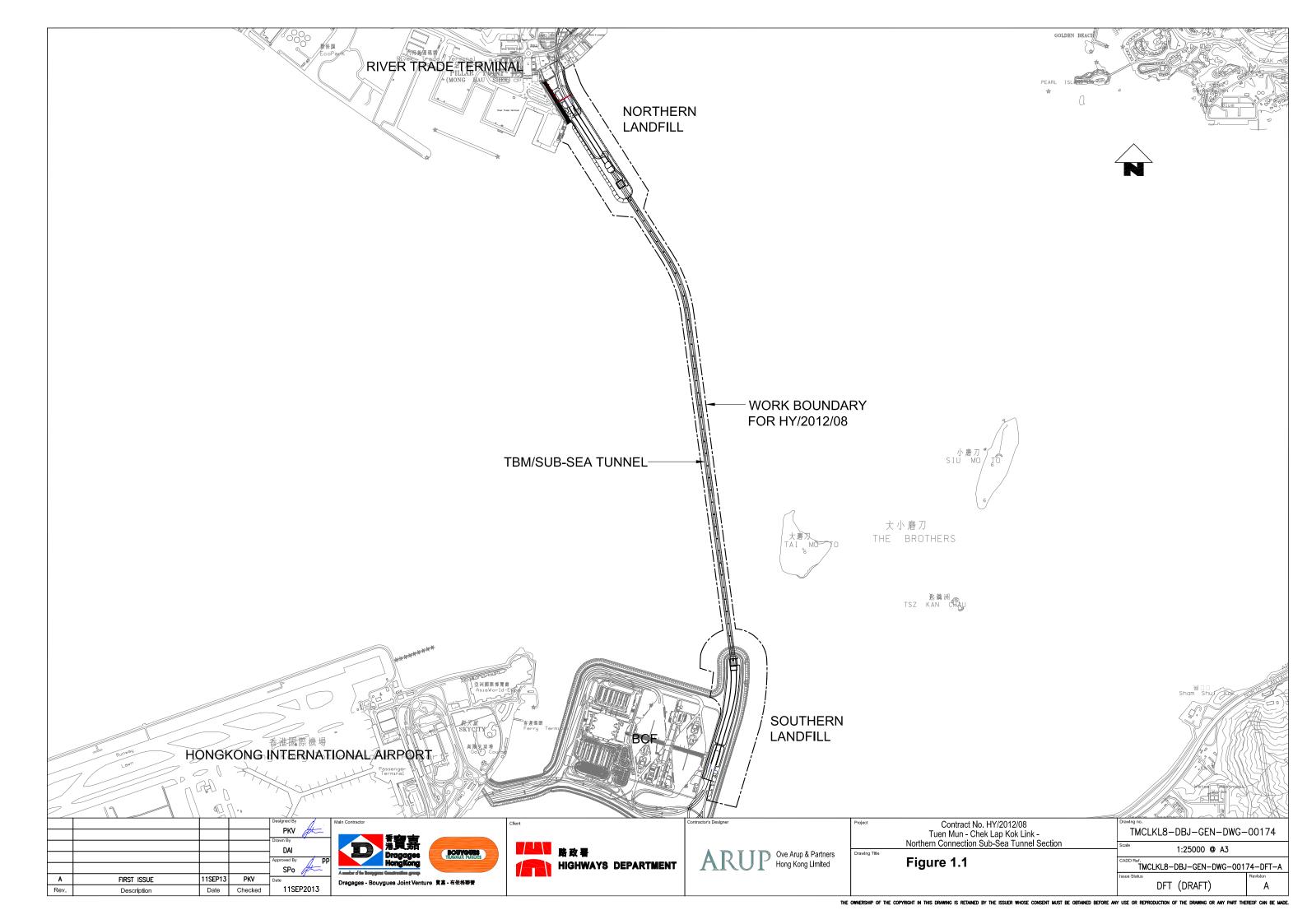
#### **Future Key Issues**

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2015 are expected to be mainly associated with dust, marine water quality, marine ecology and waste management.

#### INTRODUCTION

#### 1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEPs), *EP-354/2009/B and EP-354/2009/C*, were granted on 28 January 2014 and 10 December 2014, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.



#### 1.2 Scope of Report

This is the Fifteenth Monthly EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section.* This report presents a summary of the environmental monitoring and audit works in January 2015.

#### 1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

| Party                                                | Position                        | Name                | Telephone | Fax       |
|------------------------------------------------------|---------------------------------|---------------------|-----------|-----------|
| Highways Department                                  | Engr 16/HZMB                    | Kenneth Lee         | 2762 4996 | 3188 6614 |
| SOR<br>(AECOM Asia Company                           | Chief Resident<br>Engineer      | Edwin Ching         | 2293 6388 | 2293 6300 |
| Limited)                                             | 0                               | Andrew Westmoreland | 2293 6360 | 2293 6300 |
| ENPO / IEC<br>(ENVIRON Hong Kong                     | ENPO Leader                     | Y.H. Hui            | 3465 2888 | 3465 2899 |
| Ltd.)                                                | IEC                             | Dr. F.C. Tsang      | 3465 2828 | 3465 2899 |
| Contractor<br>(Dragages – Bouygues<br>Joint Venture) | Environmental<br>Manager        | C.F. Kwong          | 2293 7322 | 2670 2798 |
| ,                                                    | Environmental<br>Officer        | Bryan Lee           | 2293 7323 | 2670 2798 |
|                                                      | 24-hour<br>complaint<br>hotline | Rachel Lam          | 2293 7342 |           |
| ET (ERM-HK)                                          | ET Leader                       | Jovy Tam            | 2271 3113 | 2723 5660 |

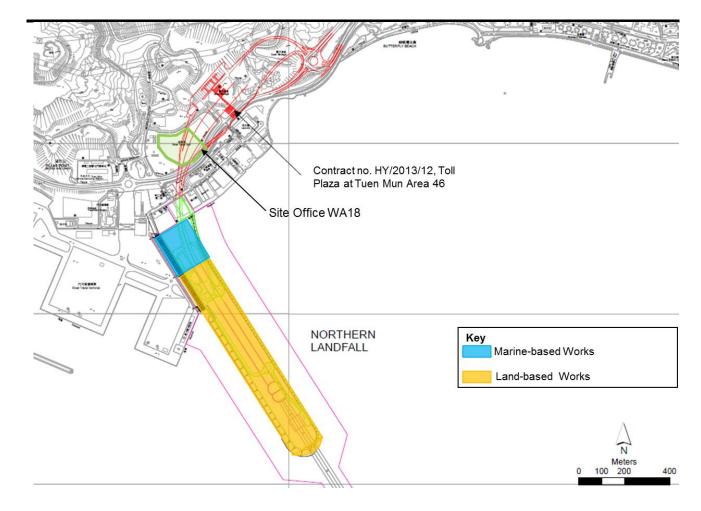
#### 1.4 SUMMARY OF CONSTRUCTION WORKS

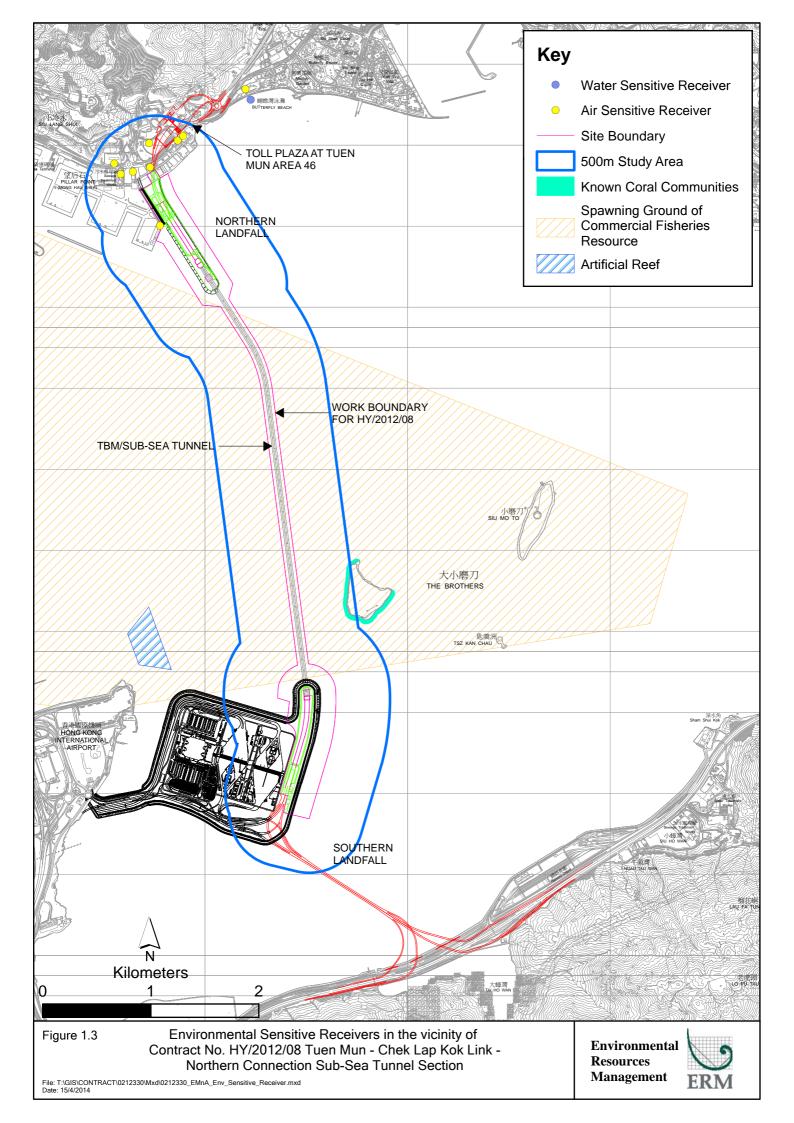
The construction phase of this Contract was commenced on 1 November 2013. The construction programme is shown in *Appendix B*.

As per DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.


Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period


#### **Construction Activities Undertaken**

Marine-based Works

- Rock Bund Deposition for Marine Sheetpile Remedial Works at Works Area Portion N-A. *Land-based Works*
- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area Portion N-A;
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

Figure 1.2 Locations of Construction Activities – January 2015





#### 2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

#### 2.1 AIR QUALITY

#### 2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days, respectively, as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 1, 4, 7, 10, 13, 16, 19, 22, 25, 28 and 31 January 2015 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind meter was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

| <b>Monitoring Station</b> | Monitoring Dates         | Location          | Description  | Parameters & Frequency                      |
|---------------------------|--------------------------|-------------------|--------------|---------------------------------------------|
| ASR1                      | 1, 4, 7, 10, 13, 16, 19, | Tuen Mun          | Office       | TSP monitoring                              |
|                           | 22, 25, 28 and 31        | Fireboat Station  |              | <ul> <li>1-hour Total Suspended</li> </ul>  |
|                           | January 2015             |                   |              | Particulates (1-hour TSP,                   |
| ASR5                      |                          | Pillar Point Fire | Office       | $\mu$ g/m³), 3 times in every 6 days        |
|                           |                          | Station           |              | <ul> <li>24-hour Total Suspended</li> </ul> |
|                           |                          |                   |              | Particulates (24-hour TSP,                  |
| AQMS1                     |                          | Previous River    | Bare ground  | $\mu$ g/m³), daily for 24-hour in           |
|                           |                          | Trade Golf        |              | every 6 days                                |
|                           |                          |                   |              | Enhanced TSP monitoring                     |
| ASR6                      |                          | Butterfly Beach   | Office       | (commenced on 24 October 2014)              |
|                           |                          | Laundry           |              | <ul> <li>1-hour Total Suspended</li> </ul>  |
|                           |                          |                   |              | Particulates (1-hour TSP,                   |
| ASR10                     |                          | Butterfly Beach   | Recreational | $\mu g/m^3$ ), 3 times in every 3 days      |
|                           |                          | Park              | uses         | <ul> <li>24-hour Total Suspended</li> </ul> |
|                           |                          |                   |              | Particulates (24-hour TSP,                  |
|                           |                          |                   |              | $\mu g/m^3$ ), daily for 24-hour in         |
|                           |                          |                   |              | every 3 days                                |

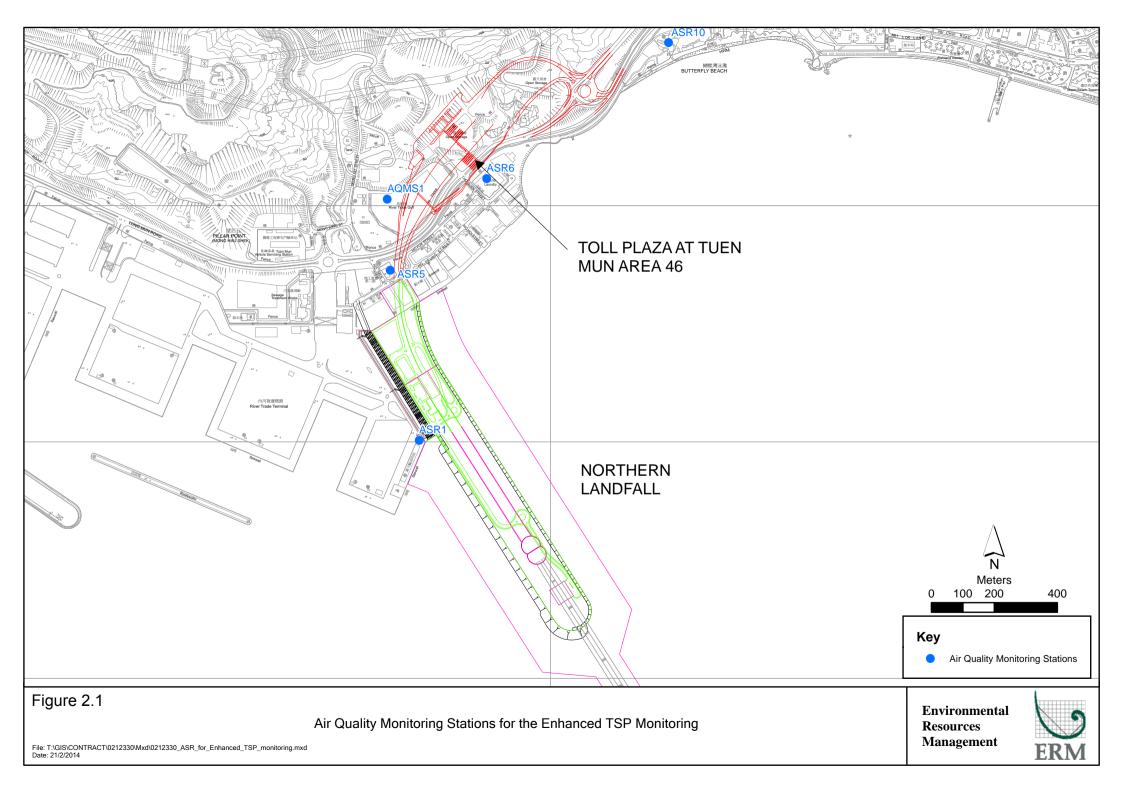



Table 2.2 Air Quality Monitoring Equipment

| Equipment                                           | Brand and Model                                                                                                          |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| High Volume Sampler<br>(1-hour TSP and 24-hour TSP) | Tisch Environmental Mass Flow Controlled<br>Total Suspended Particulate (TSP) High<br>Volume Sampler (Model No. TE-5170) |
| Wind Meter                                          | Davis (Model: Weather Wizard III (S/N: WE90911A30)                                                                       |
| Wind Anemometer for calibration                     | Lutron (Model No. AM-4201)                                                                                               |

#### 2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

#### 2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in January 2015 is provided in *Appendix F*.

#### 2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

| Station | Average (μg/m³) | Range (µg/m³)   | Action Level | Limit Level   |
|---------|-----------------|-----------------|--------------|---------------|
|         |                 |                 | (μg/m³)      | $(\mu g/m^3)$ |
| ASR1    | 193             | 53 - 307        | 331          | 500           |
| ASR5    | 200             | 99 - 314        | 340          | 500           |
| AQMS1   | 165             | 56 <b>-</b> 243 | 335          | 500           |
| ASR6    | 159             | 53 - 276        | 338          | 500           |
| ASR10   | 109             | 63 - 251        | 337          | 500           |

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

| Station | Average (μg/m³) | Range (μg/m³) | Action Level<br>(μg/m³) | Limit Level<br>(μg/m³) |
|---------|-----------------|---------------|-------------------------|------------------------|
| ASR1    | 107             | 64 - 151      | 213                     | 260                    |
| ASR5    | 105             | 76 - 148      | 238                     | 260                    |
| AQMS1   | 94              | 58 - 118      | 213                     | 260                    |
| ASR6    | 86              | 61 - 108      | 238                     | 260                    |
| ASR10   | 75              | 52 - 101      | 214                     | 260                    |

The weather condition during the monitoring period varied from sunny to cloudy. The major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

A total of eleven monitoring events were undertaken in which no Action or Limit Level exceedances of 1-hr TSP were recorded in this reporting month. No Action or Limit Level exceedances for 24-hr TSP were record.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*.

#### 2.2 WATER QUALITY MONITORING

#### 2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2; Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

| <b>Station ID</b> | Type           | Coordinates |          | *Parameters, unit                  | Depth               | Frequency        |
|-------------------|----------------|-------------|----------|------------------------------------|---------------------|------------------|
|                   | •              | Easting     | Northing | _                                  |                     |                  |
| IS12              | Impact Station | 813218      | 823681   | • Temperature(°C)                  | 3 water depths: 1m  | Impact           |
| IS13              | Impact Station | 813667      | 824325   | <ul> <li>pH(pH unit)</li> </ul>    | below sea surface,  | monitoring: 3    |
| IS14              | Impact Station | 812592      | 824172   | • Turbidity (NTU)                  | mid-depth and 1m    | days per week,   |
| IS15              | Impact Station | 813356      | 825008   | • Water depth (m)                  | above sea bed. If   | at mid-flood     |
| CS4               | Control / Far  | 810025      | 824004   | <ul> <li>Salinity (ppt)</li> </ul> | the water depth is  | and mid-ebb      |
|                   | Field Station  |             |          | <ul> <li>DO (mg/L and</li> </ul>   | less than 3m, mid-  | tides during the |
| CS6               | Control / Far  | 817028      | 823992   | % of                               | depth sampling      | construction     |
|                   | Field Station  |             |          | saturation)                        | only. If water      | period of the    |
| SR8               | Sensitive      | 816306      | 825715   | • SS (mg/L)                        | depth less than 6m, | Contract.        |
|                   | receiver       |             |          |                                    | mid-depth may be    |                  |
|                   | (Gazettal      |             |          |                                    | omitted.            |                  |
|                   | beaches in     |             |          |                                    |                     |                  |
|                   | Tuen Mun)      |             |          |                                    |                     |                  |
| SR9               | Sensitive      | 813601      | 825858   |                                    |                     |                  |
|                   | receiver       |             |          |                                    |                     |                  |
|                   | (Butterfly     |             |          |                                    |                     |                  |
|                   | Beach)         |             |          |                                    |                     |                  |
| SR10A             | Sensitive      | 823741      | 823495   |                                    |                     |                  |
|                   | receiver       |             |          |                                    |                     |                  |
|                   | (Ma Wan        |             |          |                                    |                     |                  |
|                   | FCZ)           |             |          |                                    |                     |                  |

<sup>\*</sup>Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

*Table 2.6* summarizes the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

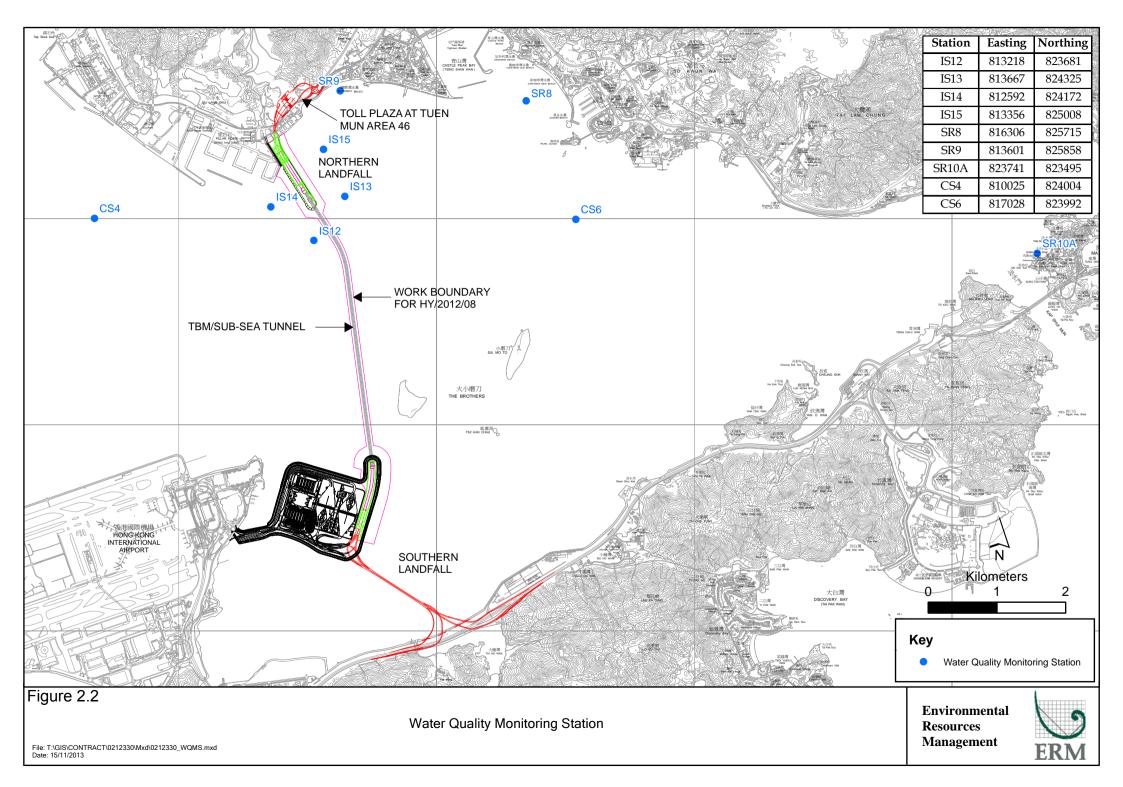



Table 2.6 Water Quality Monitoring Equipment

| Equipment              | Model                                      |
|------------------------|--------------------------------------------|
| Water Sampler          | Kahlsico Water-Bottle Model 135DW 150      |
| Dissolved Oxygen Meter | YSI Pro 2030                               |
| pH Meter               | HANNA HI 8314                              |
| Turbidity Meter        | HACH 2100Q                                 |
| Monitoring Position    | "Magellan" Handheld GPS Model explorist GC |
| Equipment              | DGPS Koden KGP913MK2 (1)                   |

#### 2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

#### 2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in January 2015 is provided in *Appendix F*.

#### 2.2.4 Results and Observations

During this reporting period, only minor marine works included rock bund deposition for marine sheetpile remedial works was carried out at Portion N-A. It is useful to note that heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity.

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Results and graphical presentations of impact water quality monitoring are presented in *Appendix I*.

In this reporting period, a total of thirteen monitoring events were undertaken in which no Action Level or Limit Levels of exceedances for impact water quality monitoring was recorded.

#### 2.3 DOLPHIN MONITORING

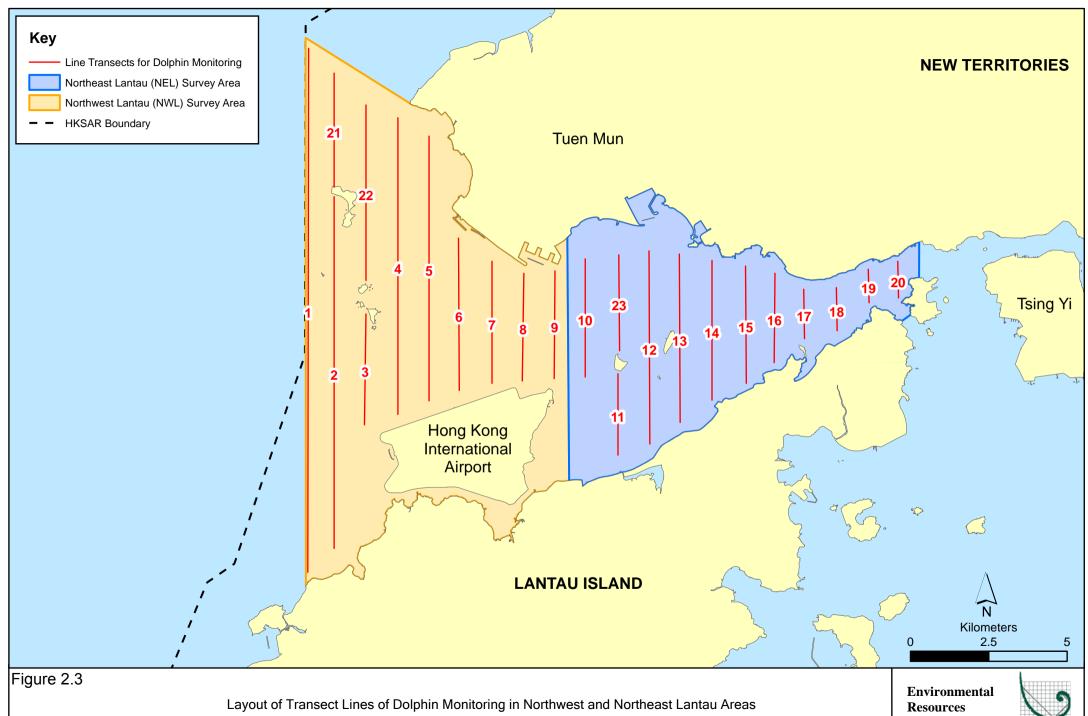
#### 2.3.1 *Monitoring Requirements*

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge.* Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

#### 2.3.2 *Monitoring Equipment*

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


| Equipment                       | Model                                                                           |
|---------------------------------|---------------------------------------------------------------------------------|
| Global Positioning System (GPS) | Garmin 18X-PC                                                                   |
|                                 | Geo One Phottix                                                                 |
| Camera                          | Nikon D90 300m 2.8D fixed focus                                                 |
|                                 | Nikon D90 20-300m zoom lens                                                     |
| Laser Binocular                 | Infinitor LRF 1000                                                              |
| Marine Binocular                | Bushell $7 \times 50$ marine binocular with compass and reticules               |
| Vessel for Monitoring           | 65 foot single engine motor vessel with viewing platform 4.5m above water level |

#### 2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

#### 2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.



File: T:\GIS\CONTRACT\0212330\Mxd\0212330\_Transect\_of\_Dolphin\_Monitoring.mxd Date: 29/11/2013

Management



 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

|    | Line No.    | Easting | Northing |    | Line No.    | Easting | Northing |
|----|-------------|---------|----------|----|-------------|---------|----------|
| 1  | Start Point | 804671  | 814577   | 13 | Start Point | 816506  | 819480   |
| 1  | End Point   | 804671  | 831404   | 13 | End Point   | 816506  | 824859   |
| 2  | Start Point | 805475  | 815457   | 14 | Start Point | 817537  | 820220   |
| 2  | End Point   | 805477  | 826654   | 14 | End Point   | 817537  | 824613   |
| 3  | Start Point | 806464  | 819435   | 15 | Start Point | 818568  | 820735   |
| 3  | End Point   | 806464  | 822911   | 15 | End Point   | 818568  | 824433   |
| 4  | Start Point | 807518  | 819771   | 16 | Start Point | 819532  | 821420   |
| 4  | End Point   | 807518  | 829230   | 16 | End Point   | 819532  | 824209   |
| 5  | Start Point | 808504  | 820220   | 17 | Start Point | 820451  | 822125   |
| 5  | End Point   | 808504  | 828602   | 17 | End Point   | 820451  | 823671   |
| 6  | Start Point | 809490  | 820466   | 18 | Start Point | 821504  | 822371   |
| 6  | End Point   | 809490  | 825352   | 18 | End Point   | 821504  | 823761   |
| 7  | Start Point | 810499  | 820690   | 19 | Start Point | 822513  | 823268   |
| 7  | End Point   | 810499  | 824613   | 19 | End Point   | 822513  | 824321   |
| 8  | Start Point | 811508  | 820847   | 20 | Start Point | 823477  | 823402   |
| 8  | End Point   | 811508  | 824254   | 20 | End Point   | 823477  | 824613   |
| 9  | Start Point | 812516  | 820892   | 21 | Start Point | 805476  | 827081   |
| 9  | End Point   | 812516  | 824254   | 21 | End Point   | 805476  | 830562   |
| 10 | Start Point | 813525  | 820872   | 22 | Start Point | 806464  | 824033   |
| 10 | End Point   | 813525  | 824657   | 22 | End Point   | 806464  | 829598   |
| 11 | Start Point | 814556  | 818449   | 23 | Start Point | 814559  | 821739   |
| 11 | End Point   | 814556  | 820992   | 23 | End Point   | 814559  | 824768   |
| 12 | Start Point | 815542  | 818807   |    |             |         |          |
| 12 | End Point   | 815542  | 824882   |    |             |         |          |

#### 2.3.5 Action & Limit Levels

The Action and Limit levels of impact dolphin monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

#### 2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 8, 15, 27 and 29 January 2015. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

#### 2.3.7 Results & Observations

A total of 294.39 km of survey effort was collected, with 98.7% of the total survey effort being conducted under favourable weather conditions (ie Beaufort Sea State 3 or below with good visibility) in January 2015. Amongst the two areas, 116.20 km and 178.19 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 214.00 km and 80.39 km, respectively. The survey efforts are summarized in *Appendix J*.

A total of 11 groups of 46 Chinese White Dolphin sightings were recorded during the two sets of surveys in January 2015. All sighting were made in NWL during the two sets of surveys in January 2015, while no dolphin was sighted in NEL. Eight of the eleven sightings were made on primary lines during on-effort search, and none of the dolphin groups was associated with operating fishing vessel.

None of the sightings was made in the vicinity of the TM-CLKL Northern Connection Sub-sea Tunnel Section. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below with good visibility) in January 2015 with the results present in *Tables 2.9* and 2.10.

Table 2.9 Individual Survey Event Encounter Rates

|       |                                                   | Encounter rate (STG)      | Encounter rate (ANI)        |
|-------|---------------------------------------------------|---------------------------|-----------------------------|
|       |                                                   | (no. of on-effort dolphin | (no. of dolphins from all   |
|       |                                                   | sightings per 100 km of   | on-effort sightings per 100 |
|       |                                                   | survey effort)            | km of survey effort)        |
|       |                                                   | Primary Lines Only        | Primary Lines Only          |
| NEL   | Set 1: January 8th/15th                           | 0.0                       | 0.0                         |
| NEL   | Set 2: January 27 <sup>th</sup> /29 <sup>th</sup> | 0.0                       | 0.0                         |
| NWL   | Set 1: January 8th/15th                           | 4.3                       | 21.6                        |
| INVVL | Set 2: January 27 <sup>th</sup> /29 <sup>th</sup> | 7.5                       | 37.6                        |

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in January 2015 in Northeast (NEL) and Northwest Lantau (NWL)

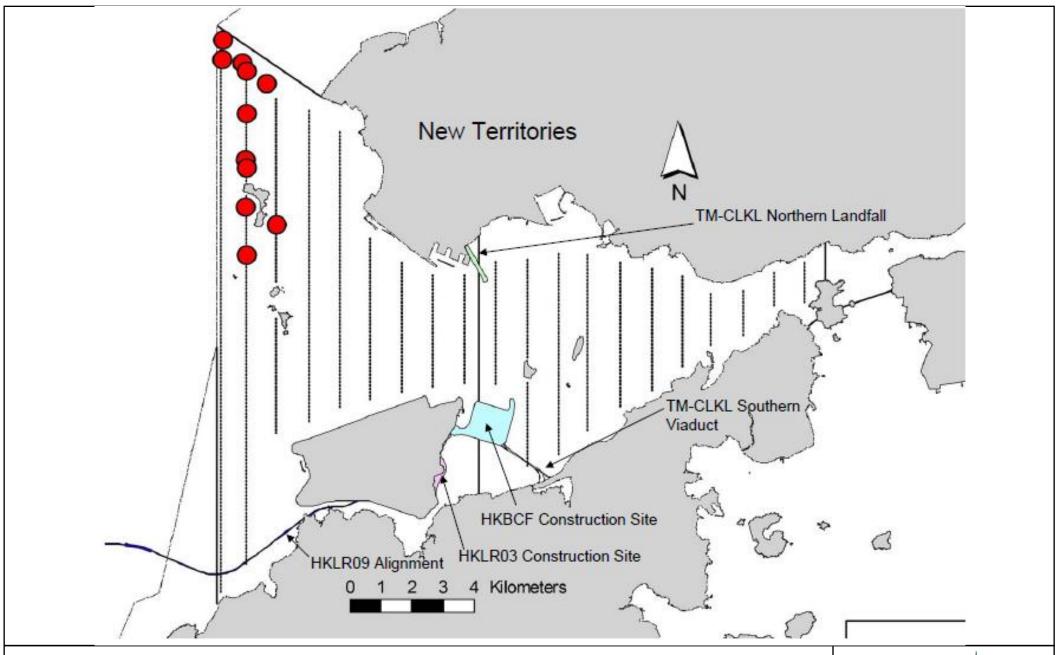



Figure 2.4

HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in January 2015)

Environmental Resources Management



Table 2.10 Monthly Average Encounter Rates

|                  | ,                     | fort dolphin<br>00 km of survey        | Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort) |      |  |  |
|------------------|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|------|--|--|
|                  | Primary<br>Lines Only | Both Primary<br>and Secondary<br>Lines | and Secondary Lines Only ar                                                                      |      |  |  |
| Northeast Lantau | 0.0                   | 0.0                                    | 0.0                                                                                              | 0.0  |  |  |
| Northwest Lantau | 5.9                   | 6.3                                    | 29.4                                                                                             | 26.4 |  |  |

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in January 2015 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

The average group size of Chinese White Dolphins in January 2015 was 4.18 individuals per group. Five of the eleven dolphin groups were composed of 5-8 animals.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected related to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

#### 2.3.8 Implementation of Marine Mammal Exclusion Zone

There was no dredging or marine sheet piling works in open waters during this reporting period. Rock bund deposition for marine sheetpile remedial works commenced on 5 January 2015 during day time. Thus, the day-time monitoring of Dolphin Exclusion Zone (DEZ) by dolphin observers was in effect throughout the period of marine sheetpile remedial works, in which no sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded during the exclusion zone monitoring in the reporting month.

#### 2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 7, 14, 21 and 28 January 2015.

Key observations and recommendations during the site inspections in this reporting period are summarized in *Table 2.11*.

Table 2.11 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Month

| Inspection Date | Observations                                                                                                                                                                                                                                                                                                         | Recommendations/ Remarks                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 January 2015  | <ul> <li>Works Area - Portion N-A</li> <li>Oil drum without drip tray was observed.</li> <li>Chemical container should be removed and place in chemical storage area.</li> <li>Works Area - Portion N-C</li> <li>Oil drum without drip tray was observed.</li> </ul>                                                 | <ul> <li>Works Area - Portion N-A</li> <li>The Contractor was reminded to provide drip tray for the oil drum.</li> <li>The Contractor was reminded to place the chemical container in chemical storage area.</li> <li>Works Area - Portion N-C</li> <li>The Contractor was reminded to provide drip tray for the oil drum.</li> </ul>                                                                                 |
| 14 January 2015 | <ul> <li>Works Area - Portion N-A</li> <li>Excess muddy water was observed.</li> <li>General refuse was observed on the ground.</li> <li>Chemical containers should be removed and place in chemical storage area.</li> </ul>                                                                                        | <ul> <li>Works Area - Portion N-A</li> <li>The Contractor was reminded to clear the excess muddy water.</li> <li>The Contractor was reminded to clear the general refuse on the ground.</li> <li>The Contractor was reminded to remove the chemical containers.</li> </ul>                                                                                                                                            |
| 21 January 2015 | <ul> <li>Works Area - Portion N-A</li> <li>Cement bags should be covered.</li> <li>Works Area - Portion N-B</li> <li>Oil drum without chemical labels was observed.</li> <li>Chemical containers were observed on the ground.</li> <li>Works Area - Portion N-C</li> <li>Excess muddy water was observed.</li> </ul> | <ul> <li>Works Area - Portion N-A</li> <li>The Contractor was reminded to fully cover the cement bags.</li> <li>Works Area - Portion N-B</li> <li>The Contractor was reminded to provide chemical labels for the oil drum.</li> <li>The Contractor was reminded to remove the chemical containers.</li> <li>Works Area - Portion N-C</li> <li>The Contractor was reminded to clear the excess muddy water.</li> </ul> |
| 28 January 2015 | <ul> <li>Works Area - Portion N-A</li> <li>Water spraying should be applied more frequently during windy condition.</li> <li>Works Area - Portion N-B</li> <li>Excess muddy water was observed.</li> </ul>                                                                                                           | <ul> <li>Works Area - Portion N-A</li> <li>The Contractor was reminded to apply water spraying more frequently during windy condition.</li> <li>Works Area - Portion N-B</li> <li>The Contractor was reminded to clear the excess muddy water.</li> </ul>                                                                                                                                                             |

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting month.

#### 2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert). Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.12*.

Table 2.12 Quantities of Different Waste Generated in the Reporting Month

| Month/Year      | Inert<br>Construction | Imported<br>Fill (tonnes) | Inert<br>Construction         | Non-inert<br>Construction | Recyclable<br>Materials (c) | Chemical<br>Wastes | Marine So     | ediment (m³)                                     |
|-----------------|-----------------------|---------------------------|-------------------------------|---------------------------|-----------------------------|--------------------|---------------|--------------------------------------------------|
|                 | Waste (a)<br>(tonnes) |                           | Waste Re-<br>used<br>(tonnes) | Waste (b) (tonnes)        | (kg)                        | (kg)               | Category<br>L | Category M<br>(M <sub>p</sub> & M <sub>f</sub> ) |
| January<br>2015 | 30,877                | 0                         | 0                             | 80                        | 0                           | 0                  | 0             | 0                                                |

#### Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

#### 2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.13* below.

Table 2.13 Summary of Environmental Licensing and Permit Status

| License/ Permit                        | License or Permit No. | Date of Issue     | Date of Expiry          | License/ Permit Holder | Remarks                                                          |
|----------------------------------------|-----------------------|-------------------|-------------------------|------------------------|------------------------------------------------------------------|
| Environmental Permit                   | EP-354/2009/C         | 28 January 2014   | Throughout the Contract | HyD                    | Application for VEP on 10 December 2014 to replace EP-354/2009/B |
| Construction Dust<br>Notification      | 363510                | 19 August 2013    | Throughout the Contract | DBJV                   | -                                                                |
| Chemical Waste<br>Registration         | 5213-422-D2516-01     | 10 September 2013 | Throughout the Contract | DBJV                   | -                                                                |
| Construction Waste<br>Disposal Account | 7018108               | 19 August 2013    | Throughout the Contract | DBJV                   | Waste disposal in Contract No. HY/2012/08                        |
| Waste Water Discharge<br>License       | WT00017707-2013       | 18 November 2013  | 30 November 2018        | DBJV                   | For site WA18                                                    |
| Waste Water Discharge<br>License       | WT00019248-2014       | 5 June 2014       | 30 June 2019            | DBJV                   | For site Portion N6 and Reclamation Area E                       |
| Construction Noise Permit              | GW-RW0847-14          | 11 May 2014       | 10 May 2015             | DBJV                   | For site WA23                                                    |
| Construction Noise Permit              | GW-RW0706-14          | 29 September 2014 | 28 March 2015           | DBJV                   | For Portion N6                                                   |
| Construction Noise Permit              | GW-RW0550-14          | 25 July 2014      | 24 January 2015         | DBJV                   | For Dredging and Reclamation Works                               |
| Construction Noise Permit              | GW-RW0970-14          | 17 December 2014  | 14 May 2015             | DBJV                   | For Dredging and Reclamation Works                               |
| Construction Noise Permit              | GW-RW0674-14          | 18 September 2014 | 17 March 2015           | DBJV                   | For GI Works at Southern Landfall                                |
| Marine Dumping Permit                  | EP/MD/15-142          | 7 November 2014   | 31 January 2015         | DBJV                   | For Type 1 (Open Sea Disposal)                                   |

#### Notes:

HyD = Highways Department

DBJV = Dragages - Bouygues Joint Venture

VEP = Variation of Environmental Permit

#### 2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractors carried out all corrective actions.

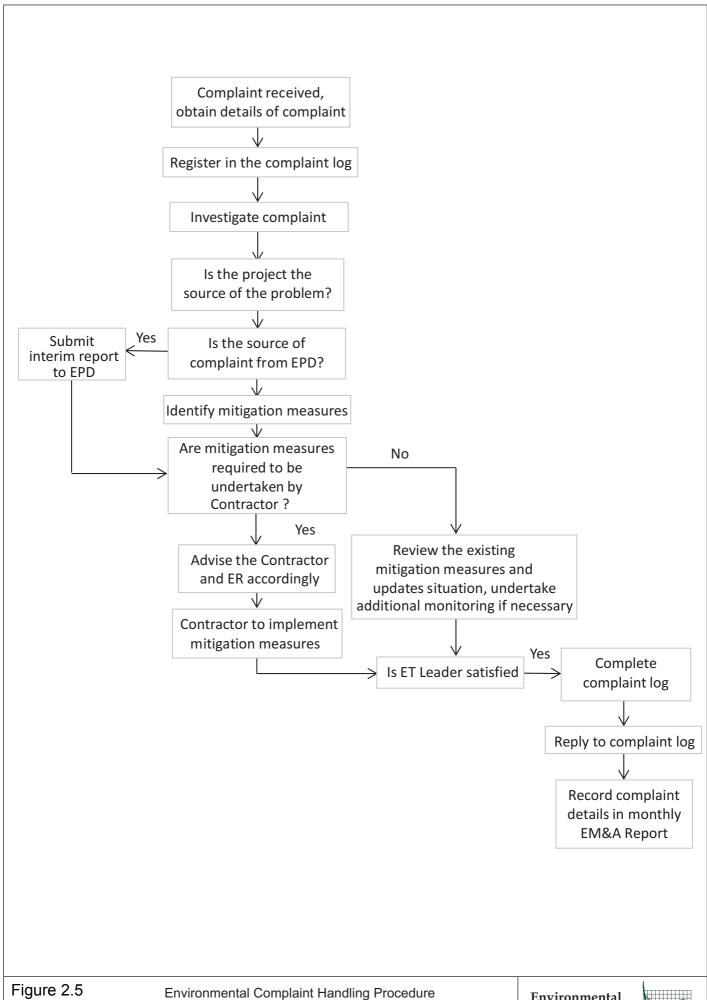
A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

# 2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month.

Cumulative statistics are provided in *Appendix L*.


# 2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

No environmental complaint was received in the reporting period.

No notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.



Environmental Resources Management



#### 3 FUTURE KEY ISSUES

#### 3.1 CONSTRUCTION ACTIVITIES FOR THE COMING MONTH

As informed by the Contractor, the major works for the Project in February 2015 are summarized in *Table 3.1*.

#### Table 3.1 Construction Works to Be Undertaken in the Coming Month

#### Works to be undertaken

#### Land-based Works

- Diaphragm Wall Construction at Works Area Portion N-C;
- TBM Platform Construction at Works Area Portion N-A;
- Formwork and Metal Scaffolding works at North Launching Shaft at Works Area Portion N-A and,
- Set up of Slurry Treatment Plant at Works Area Portion N-C.

#### Marine-based Works

Rock Bund Deposition for Marine Sheetpile Remedial at Works Area - Portion N-A.

#### 3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2015 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

#### 3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in February 2015 is provided in *Appendix F*.

#### 4 CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CONCLUSIONS

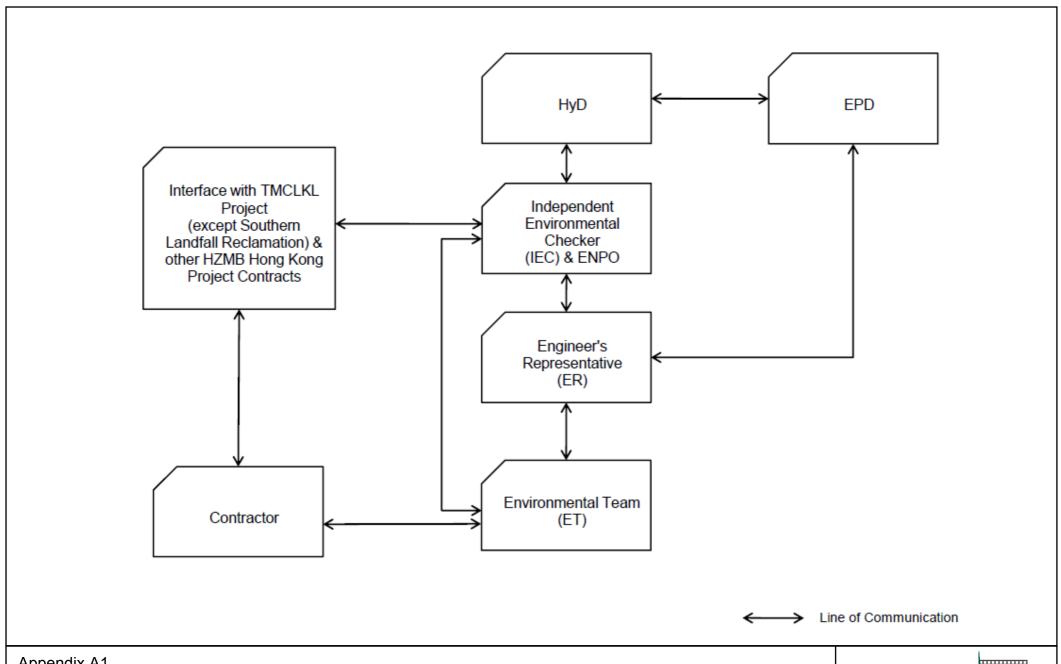
This Fifteenth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 31 January 2015, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/C.

Air quality (including 1-hour TSP and 24-hour TSP), water quality and dolphin monitoring were carried out in this reporting month. No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month. No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

A total of eleven (11) groups of forty-six (46) Chinese White Dolphin sightings were recorded during the two sets of surveys in January 2015. All sighting were made in NWL during the two sets of surveys in January 2015, while no dolphin was sighted in NEL. Eight of the eleven sightings were made on primary lines during on-effort search, and none of the dolphin groups was associated with operating fishing vessel. No unacceptable impact from the construction activities of the TM-CLKL Northern Connection Sub-sea Tunnel Section on Chinese White Dolphins was noticeable from general observations during the dolphin monitoring in this reporting month.

Environmental site inspection was carried out four (4) times in January 2015. Recommendations on remedial actions recommended for the deficiencies identified during the site audits were properly implemented by the Contractor.

No non-compliance event was recorded during the reporting period.


No environmental complaint was received during the reporting period.

No summons/ prosecution was received during the reporting period.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

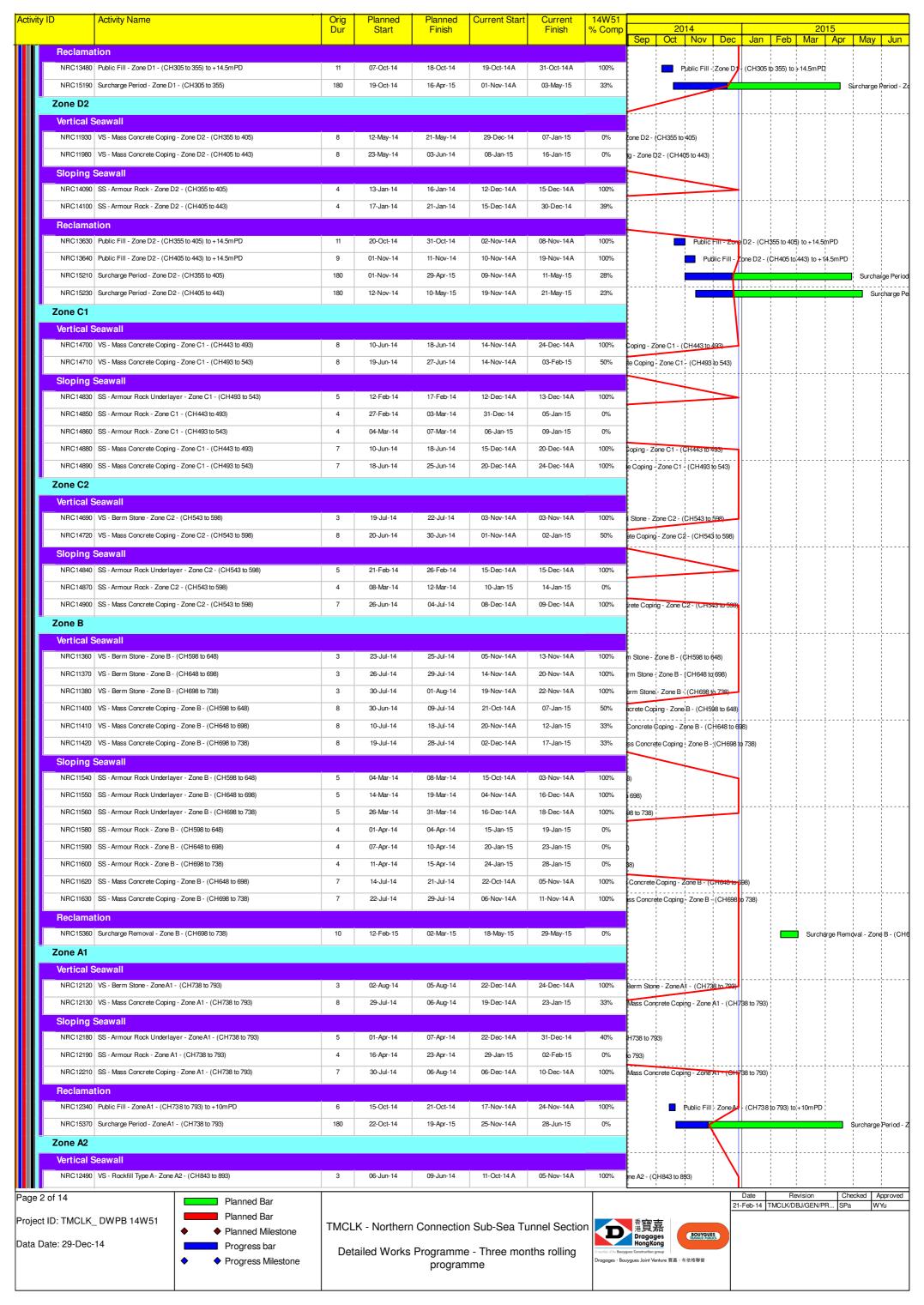
### Appendix A

# Project Organization for Environmental Works



Appendix A1

Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section **Project Organization** 


**Environmental** Resources Management



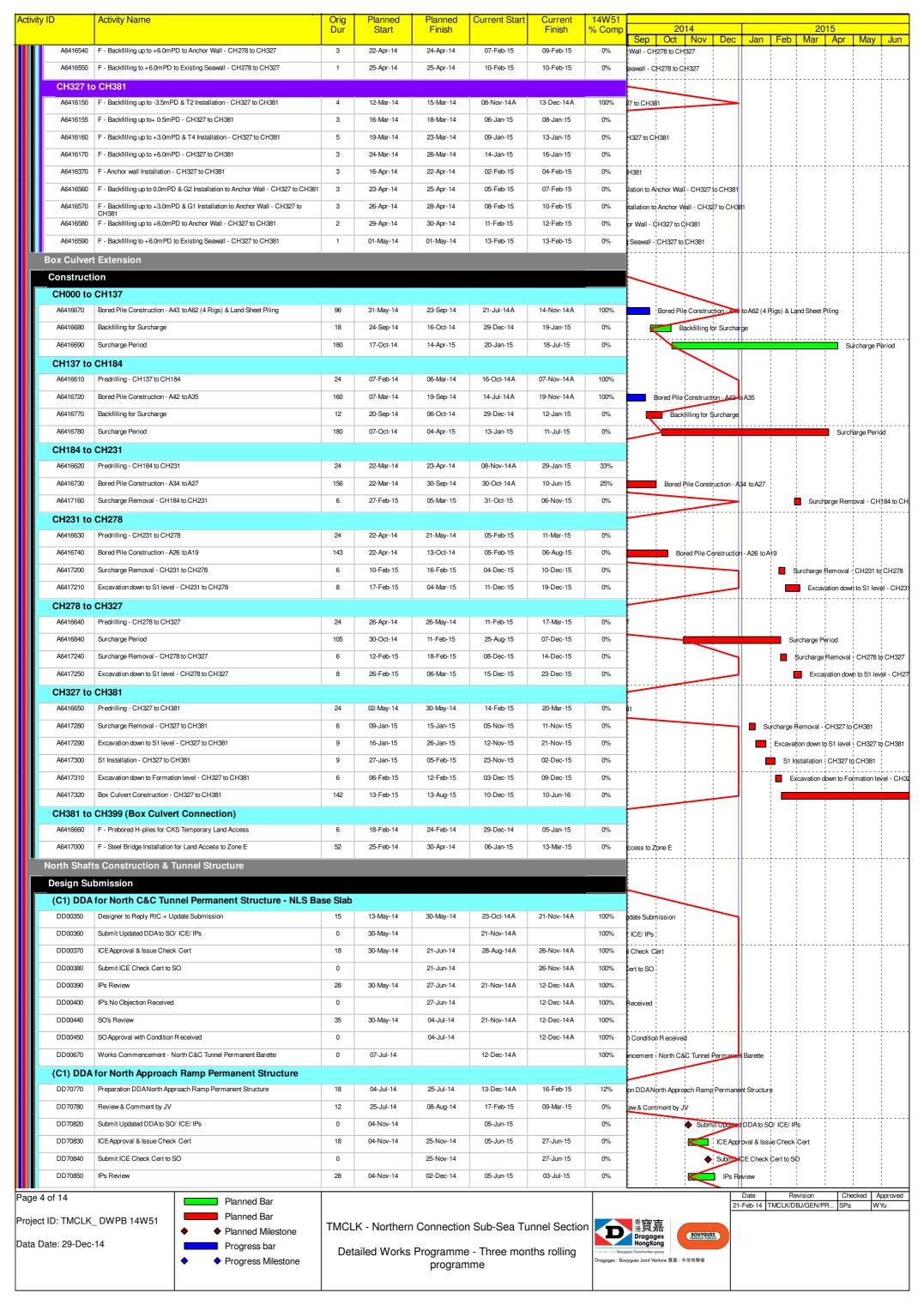
## Appendix B

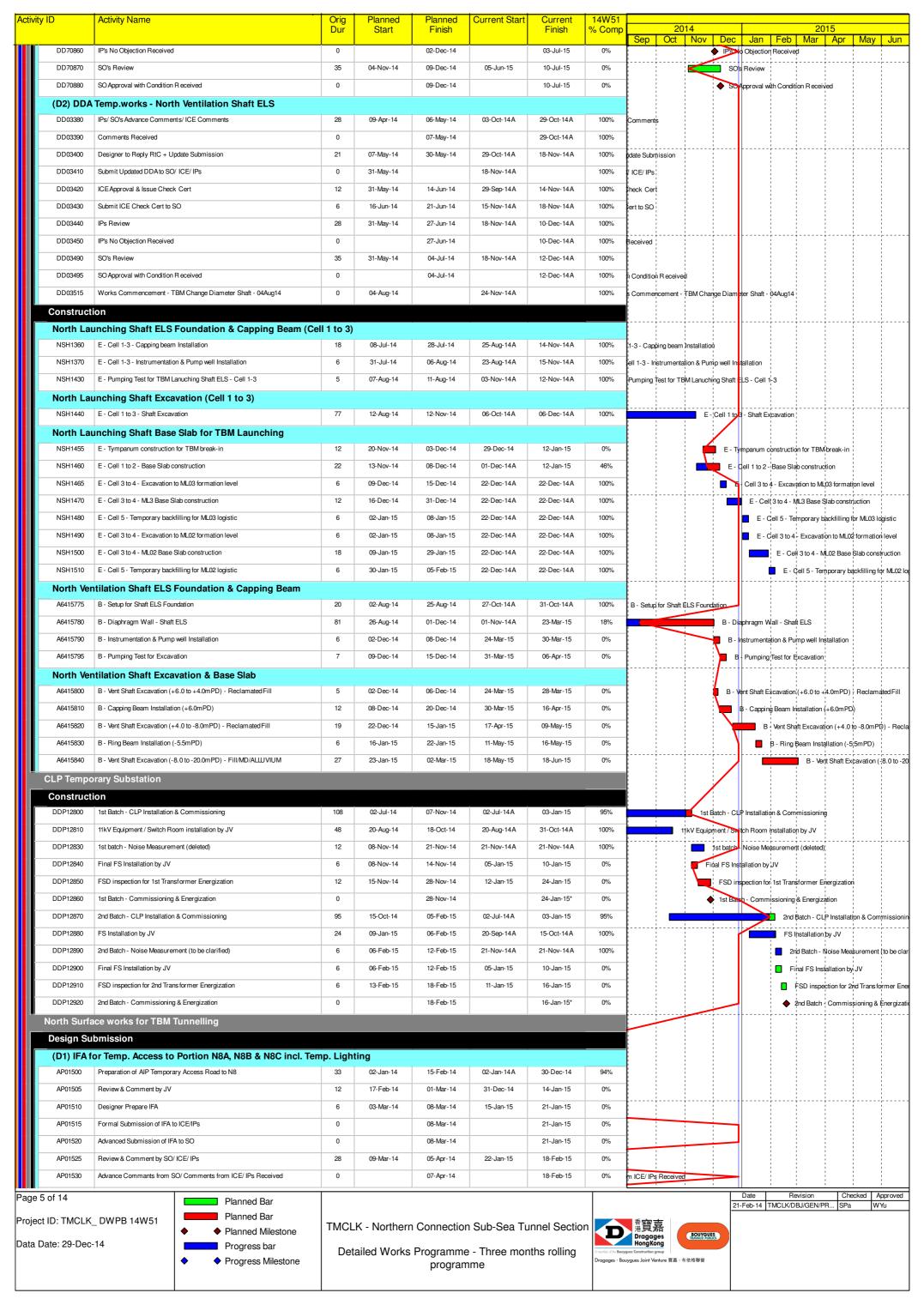
# Construction Programme

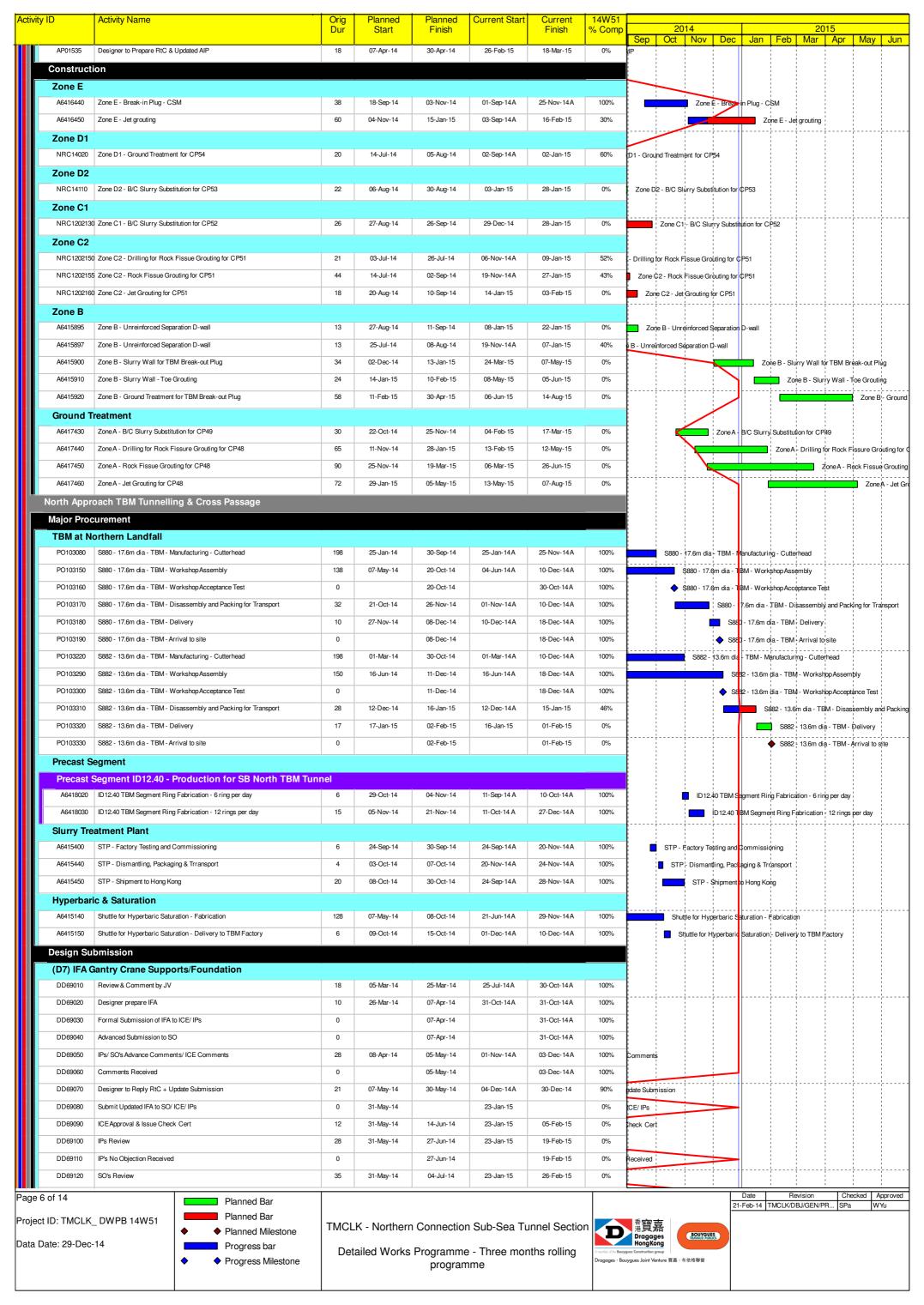
| ctivity ID                                          | Activity Name                                                                                                | Orig<br>Dur | Planned<br>Start       | Planned<br>Finish      | Current Start                        | Current<br>Finish        | 14W51<br>% Comp             | 2014 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|------------------------|------------------------|--------------------------------------|--------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THOU K                                              | " O O O O O O O O                                                                                            | Dui         | Start                  | 1 1111511              |                                      | 1 1111511                | /« Comp                     | Sep Oct Nov Dec Jan Feb Mar Apr May Ju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contract Da                                         | orthern Connection Sub-Sea Tunnel Section                                                                    |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Handover I                                          |                                                                                                              |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HD010                                               | Portions: WA18C                                                                                              | 0           |                        | 06-Jan-15              |                                      | 06-Jan-15*               | 0%                          | ◆ Portions: WA18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| General Sul                                         | omissions                                                                                                    |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Programm                                            |                                                                                                              |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SCC0277                                             | Detailed Works Programme - SCC27.2 - Approval by SO                                                          | 30          | 11-Feb-14              | 12-Mar-14              | 29-Aug-14A                           | 13-Nov-14A               | 100%                        | so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| General De                                          | esign Submissions                                                                                            |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A19) DDA                                           | for Roadworks & Project Alignment                                                                            |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DD68310                                             | IPs/ SO's Advance Comments/ ICE Comments                                                                     | 28          | 26-Jul-14              | 22-Aug-14              | 08-Sep-14A                           | 13-Nov-14A               | 100%                        | IPs/ SO's Advance Comments/ ICE Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DD68320                                             | Comments Received                                                                                            | 0           |                        | 22-Aug-14              |                                      | 13-Nov-14A               | 100%                        | Comments Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DD68330                                             | Designer to Reply RtC + Update Submission                                                                    | 21          | 23-Aug-14              | 17-Sep-14              | 14-Nov-14A                           | 22-Dec-14A               | 100%                        | Designer to Reply RtC + Updale Submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DD68340<br>DD68350                                  | Submit Updated DDA to SO/ ICE/ IPs  ICE Approval & Issue Check Cert                                          | 12          | 18-Sep-14<br>18-Sep-14 | 03-Oct-14              | 22-Dec-14A                           | 02-Jan-15                | 100%                        | ♦ Submit Updated DDA'to SO/ Id = / IPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DD68360                                             | Submit ICE Check Cert to SO                                                                                  | 6           | 04-Oct-14              | 10-Oct-14              | 03-Sep-14A<br>03-Jan-15              | 02-Jan-15                | 0%                          | ICE Approval & Issue Check Cert  Submit ICE Check Cert to SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DD68370                                             | SO's Review                                                                                                  | 35          | 18-Sep-14              | 22-Oct-14              | 31-Dec-14                            | 03-Feb-15                | 0%                          | SO's Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DD68380                                             | SO Approval with Condition R eceived                                                                         | 0           |                        | 22-Oct-14              |                                      | 03-Feb-15                | 0%                          | SO Approval was condition Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (G6) IFA fo                                         | r Tunnel GBP                                                                                                 |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DD70750                                             | SO's Review                                                                                                  | 35          | 29-Apr-14              | 02-Jun-14              | 09-Aug-14A                           | 30-Dec-14                | 94%                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DD70760                                             | SO Approval with Condition R eceived                                                                         | 0           |                        | 03-Jun-14              |                                      | 30-Dec-14                | 0%                          | R eceived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Constructi                                          | on Supervision Plan                                                                                          |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEO1115                                             | 2nd GEO Review                                                                                               | 28          | 29-Mar-14              | 25-Apr-14              | 29-Mar-14A                           | 30-Dec-14                | 93%                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Self contai                                         | ned Cat I/II supervising monthly report                                                                      |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEO1425                                             | 1st Submission GEO Review                                                                                    | 28          | 31-May-14              | 27-Jun-14              | 15-Oct-14A                           | 21-Nov-14A               | 100%                        | EO Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GEO1430                                             | Received GEO Comment                                                                                         | 0           |                        | 27-Jun-14              |                                      | 21-Nov-14A               | 100%                        | mment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GEO1435                                             | Prepare Response to Comment                                                                                  | 12          | 28-Jun-14              | 12-Jul-14              | 21-Nov-14A                           | 21-Nov-14A               | 100%                        | ponse to Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GEO1440                                             | 2nd Submission to GEO                                                                                        | 0           | 40 1 144               | 12-Jul-14              | 04 No. 444                           | 21-Nov-14A               | 100%                        | on to GEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GEO1445                                             | 2nd GEO Review                                                                                               | 28          | 13-Jul-14              | 09-Aug-14              | 21-Nov-14A                           | 21-Nov-14A               | 100%                        | GEO Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Construction Northern L                             |                                                                                                              |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | andiali<br>amation (Phase 1)                                                                                 |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ļ <u></u>                                           | ubmission                                                                                                    |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | A Construction Risk Assessment - Impact on North La                                                          | ndfall +    | Sub-sea Tunr           | nel                    |                                      |                          | _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DD68410                                             | SO's Comments for 1st Submission                                                                             | 35          | 01-Jun-14              | 05-Jul-14              | 27-Sep-14A                           | 30-Dec-14                | 94%                         | s for 1st Submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DD68420                                             | Prepare Re-submission                                                                                        | 10          | 07-Jul-14              | 17-Jul-14              | 31-Dec-14                            | 12-Jan-15                | 0%                          | submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DD68430                                             | 2nd Submission                                                                                               | 0           |                        | 17-Jul-14              |                                      | 12-Jan-15                | 0%                          | sion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DD68490                                             | SO's Condition Approval                                                                                      | 35          | 18-Jul-14              | 21-Aug-14              | 13-Jan-15                            | 16-Feb-15                | 0%                          | SO's Condition Approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Method S                                            | tatement Submission                                                                                          |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | Statement of Construction Methodology of Culvert E                                                           |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MS1800                                              | Preparation Method Statement for Culvert Extension                                                           | 25          | 24-Jun-14              | 23-Jul-14              | 29-Dec-14                            | 27-Jan-15                | 0%                          | n Method Statement for Culvert Extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MS1810<br>MS1820                                    | Submit Method Statement to SO  SO Reviews & Comments                                                         | 28          | 24-Jul-14              | 23-Jul-14<br>20-Aug-14 | 28-Jan-15                            | 27-Jan-15<br>24-Feb-15   | 0%                          | ethod Statement to SO SO Reviews & Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MS1830                                              | Re-submission                                                                                                | 18          | 21-Aug-14              | 11-Sep-14              | 26-Feb-15                            | 18-Mar-15                | 0%                          | Re-submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Construct                                           |                                                                                                              | .0          | 217.0g 11              | 600 11                 | 20 1 00 10                           | 10 Mai 10                | 0,0                         | Telsourission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mileston                                            |                                                                                                              |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NRC13160                                            | Completion of Zone D1 Reclamation up to +14.5mPD                                                             | 0           |                        | 18-Oct-14              |                                      | 31-Oct-14A               | 100%                        | ◆ Completion of Zone 01 Reclamation up to +14.5mPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NRC13180                                            | Completion of Zone D2 Reclamation up tp +14.5mPD                                                             | 0           |                        | 11-Nov-14              |                                      | 19-Nov-14A               | 100%                        | ♦ Completion of Zone D2 Reclamation up tp +14.5mPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NRC13210                                            | Completion of Zone C2 Reclamation up to +10mPD                                                               | 0           |                        | 17-Sep-14              |                                      | 06-Jan-15A               | 100%                        | ◆ Completion of Zone C2 Reclanation up to +10mPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NRC13240                                            | Completion of Zone A1 Reclamation up to +10mPD                                                               | 0           |                        | 21-Oct-14              |                                      | 03-Feb-15                | 0%                          | ◆ Completion of Zone 1 Reclamation up to +10mPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NRC13250                                            | Completion of Zone A2 Reclamation up to +10mPD (TBC)                                                         | 0           |                        | 10-Nov-14              |                                      | 12-Feb-15                | 0%                          | ◆ Completion of Zone A2 Reclamation up to +10mPD (TBC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Zone E                                              |                                                                                                              |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | Seawall                                                                                                      | -           | 20.11                  | 10.11                  |                                      | 4.5                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | 0 VS - Mass Concrete Coping - Zone E - (CH0 to 50)                                                           | 8           | 02-May-14              | 12-May-14              | 21-Jul-14A                           | 14-Nov-14A               |                             | ⇒ E - (CH0 to 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     | 0 VS - Mass Concrete Coping - Zone E - (CH50 to 100) 0 VS - Mass Concrete Coping - Zone E - (CH100 to 150)   | 8           | 13-May-14<br>22-May-14 | 21-May-14<br>30-May-14 | 23-Jul-14A<br>09-Jul-14A             | 03-Nov-14A<br>12-Nov-14A | 100%                        | Ione E - (CH50 to 100)  - Zone E - (CH100 to 150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     | VS - Mass Concrete Coping - Zone E - (CH100 to 190)      VS - Mass Concrete Coping - Zone E - (CH150 to 205) | 11          | 31-May-14              | 13-Jun-14              | 16-Jul-14A                           | 20-Nov-14A               | 100%                        | pping - Zone E - (CH100 to 150)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zone D1                                             | , , ,                                                                                                        |             | ,                      |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | Seawall                                                                                                      |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | VS - Mass Concrete Coping - Zone D1 - (CH205 to 255)                                                         | 15          | 02-May-14              | 20-May-14              | 22-Dec-14A                           | 10-Jan-15                | 25%                         | one D1 - (CH205 to 255)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NRC11790                                            | VS - Mass Concrete Coping - Zone D1 - (CH255 to 305)                                                         | 8           | 21-May-14              | 29-May-14              | 12-Jan-15                            | 20-Jan-15                | 0%                          | Zone D1 - (CH255 to 305)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NRC11860                                            | VS - Mass Concrete Coping - Zone D1 - (CH305 to 355)                                                         | 8           | 30-May-14              | 09-Jun-14              | 21-Jan-15                            | 29-Jan-15                | 0%                          | ping - Zone D1 - (CH305 to 355)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sloping                                             | Seawall                                                                                                      |             |                        |                        |                                      |                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | 08 VS - Berm Stone - Zone D1 - RTT                                                                           | 2           | 20-Jun-14              | 21-Jun-14              | 01-Dec-14A                           | 29-Dec-14                |                             | one D1 - RTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     | 09 VS - Mass Concrete Coping - Zone D1 - RTT                                                                 | 4           | 26-Apr-14              | 02-May-14              | 12-Aug-14A                           | 29-Dec-14                | 80%                         | 1-RTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                     | D SS - Armour Rock - Zone D1 - (CH255 to 305)                                                                | 4           | 03-Jan-14              | 07-Jan-14              | 02-Dec-14A                           | 02-Dec-14A               | 100%                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | D SS - Armour Rock - Zone D1 - (CH305 to 355)                                                                | 4           | 08-Jan-14              | 11-Jan-14              | 09-Dec-14A                           | 12-Jan-15A               | 100%                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| age 1 of 14<br>roject ID: TMCLK<br>ata Date: 29-Dec | Planned Bar Planned Bar Planned Bar Planned Milestone Progress bar Progress Milestone                        |             |                        |                        | n Sub-Sea Tu<br>e - Three mor<br>nme |                          | A member of the <b>Bouy</b> | Date Revision Checked Approving The Date Revision Checked Approving Tolerand Tolera |

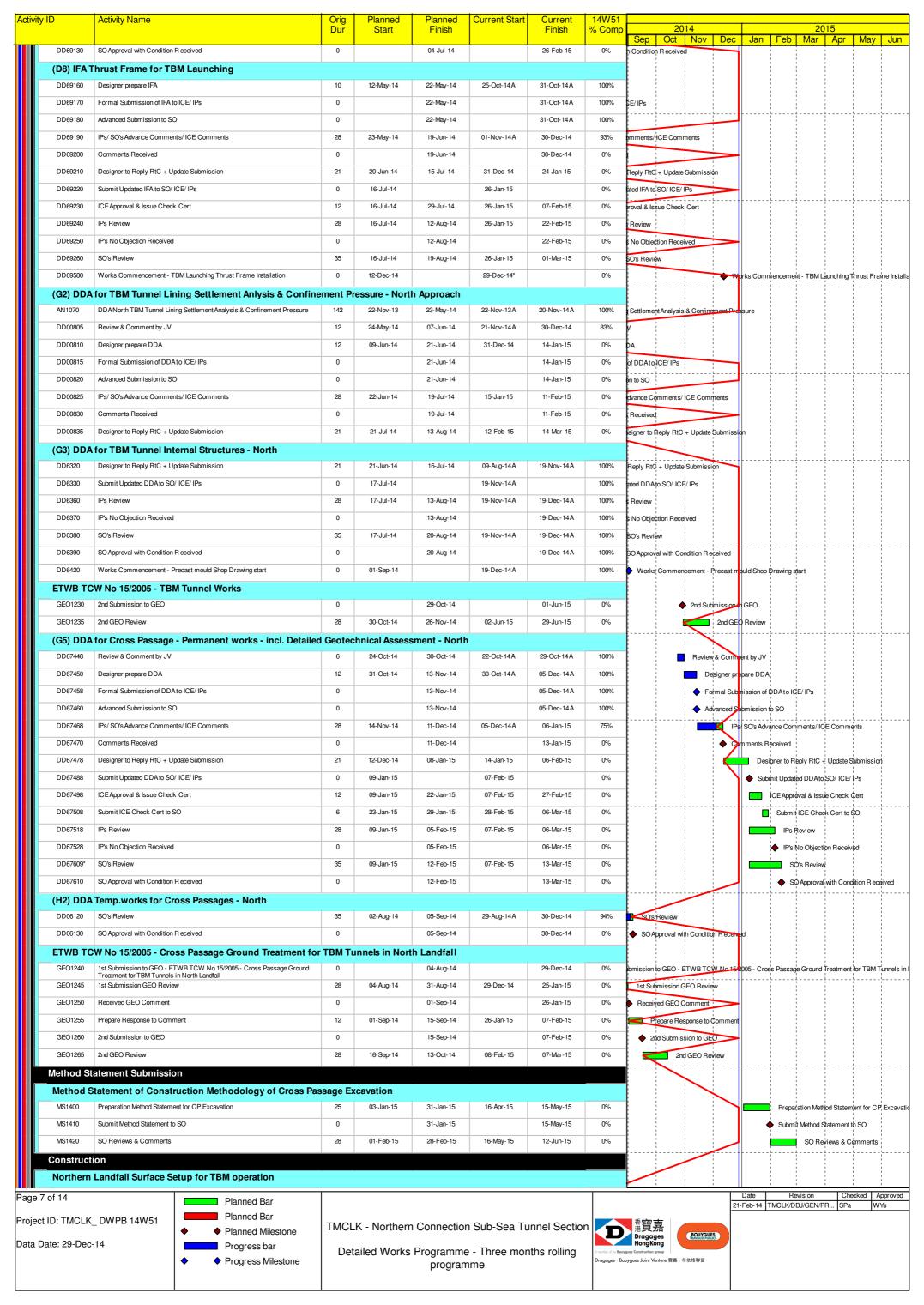


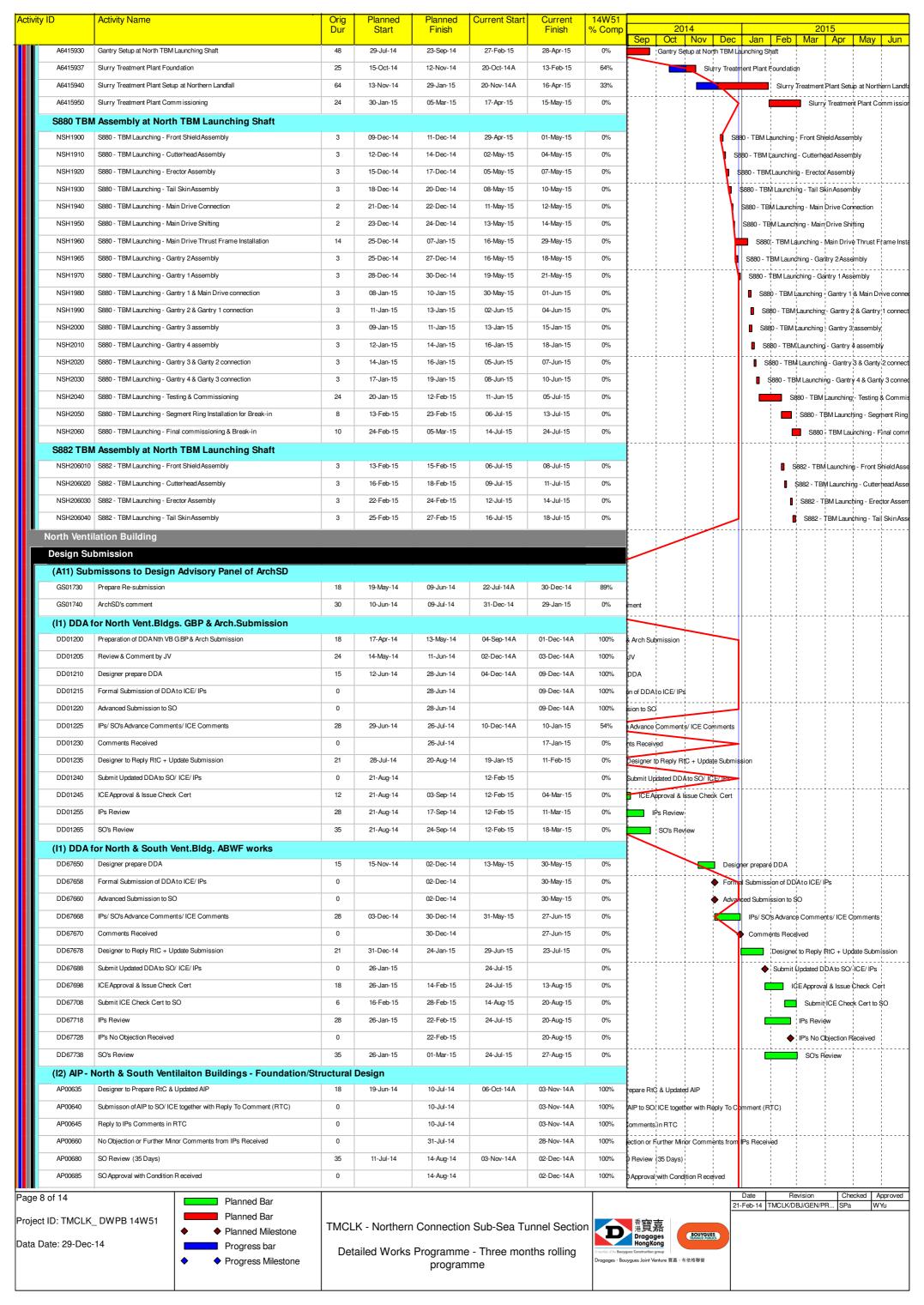
| Activ | ity ID               | Activity Name                                                                                                                  | Orig | Planned                | Planned                | Current Start            | Current                  | 14W51  | 0014                                                            |                         | 0041                     |                                         |                 |
|-------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|------|------------------------|------------------------|--------------------------|--------------------------|--------|-----------------------------------------------------------------|-------------------------|--------------------------|-----------------------------------------|-----------------|
|       |                      |                                                                                                                                | Dur  | Start                  | Finish                 |                          | Finish                   | % Comp | Sep Oct Nov Dec                                                 | Jan Fel                 | 2015<br>b Mar            | Apr May                                 | y Jun           |
|       |                      | VS - Rockfill Type A - Zone A2 - (CH893 to 956)                                                                                | 7    | 10-Jun-14              | 17-Jun-14              | 11-Nov-14 A              | 23-Nov-14A               | 100%   | Zone A2 - (CH893 to 956)                                        |                         |                          | į                                       |                 |
|       |                      | VS - Geotextile - Zone A2 - (C H843 to 893)                                                                                    | 2    | 12-Jun-14              | 13-Jun-14              | 11-Oct-14 A              | 10-Nov-14A               | 100%   | A2 - (C H843 to 893) ;                                          |                         |                          |                                         |                 |
|       |                      | VS - Geotextile - Zone A2 - (CH893 to 956)  VS - Granular Filter - Zone A2 - (CH843 to 893)                                    | 5    | 14-Jun-14<br>19-Jun-14 | 19-Jun-14<br>23-Jun-14 | 12-Nov-14A<br>03-Nov-14A | 23-Nov-14A<br>05-Nov-14A | 100%   | e A2 - (C H893 to 956)                                          |                         |                          |                                         |                 |
| Н     |                      | VS - Granular Filter - Zone A2 - (CH893 to 956)                                                                                | 10   | 24-Jun-14              | 05-Jul-14              | 05-Nov-14A               | 23-Nov-14A               | 100%   | - Zone A2 - (CH843 to 893)<br>filter - Zone A2 - (CH893 to 956) |                         |                          |                                         |                 |
|       |                      | VS - Berm Stone - Zone A2 - (CH793 to 843)                                                                                     | 3    | 06-Aug-14              | 08-Aug-14              | 01-Dec-14A               | 07-Dec-14A               | 100%   | Berm Stone - Zone A2 - (CH793 to 84                             | 3                       |                          | į                                       |                 |
|       |                      | VS - Berm Stone - Zone A2 - (CH843 to 893)                                                                                     | 3    | 09-Aug-14              | 12-Aug-14              | 08-Dec-14A               | 10-Dec-14A               | 100%   | - Berm Stone - Zone A2 - (CH843 to 8                            |                         |                          |                                         |                 |
| Н     | NRC12590             | VS - Berm Stone - Zone A2 - (CH893 to 956)                                                                                     | 7    | 13-Aug-14              | 20-Aug-14              | 11-Dec-14 A              | 14-Dec-14A               | 100%   | VS - Berm¦Stone - ZoneA2 - (CH893 t                             |                         |                          |                                         |                 |
| Ш     | NRC12600             | VS - Mass Concrete Coping - Zone A2 - (CH793 to 843)                                                                           | 8    | 07-Aug-14              | 15-Aug-14              | 31-Jan-15A               | 31-Jan-15                | 18%    | 5 - Mass Concrete Coping - Zone A2 -                            |                         |                          |                                         |                 |
|       | NRC12610             | VS - Mass Concrete Coping - Zone A2 - (CH843 to 893)                                                                           | 8    | 16-Aug-14              | 25-Aug-14              | 02-Feb-15                | 10-Feb-15                | 0%     | VS - Mass Concrete Coping - Zone A                              | 2 - (CH843 to 893)      |                          |                                         |                 |
| ı     | NRC12620             | VS - Mass Concrete Coping - Zone A2 - (CH893 to 956)                                                                           | 18   | 26-Aug-14              | 16-Sep-14              | 11-Feb-15                | 10-Mar-15                | 0%     | VS - Mass Concrete Coping -                                     | Zone A2 - (CH893        | to 956)                  | }                                       |                 |
|       | Sloping S            | Seawall Seawall                                                                                                                |      |                        |                        |                          |                          |        |                                                                 |                         |                          |                                         |                 |
|       | NRC12680             | SS - Rock Grade 400 - Zone A2 - (CH893 to 956) to +2.5mPD (4k/d)                                                               | 7    | 16-Apr-14              | 26-Apr-14              | 01-Sep-14A               | 19-Nov-14A               | 100%   | 93 to 956) to +2.5mPD (4k/d)                                    | 4                       |                          |                                         |                 |
| Ш     | NRC12720             | SS - Armour Rock Underlayer - Zone A2 - (CH793 to 843)                                                                         | 5    | 09-Apr-14              | 14-Apr-14              | 02-Jan-15                | 07-Jan-15                | 0%     | CH793 to 843)                                                   |                         |                          | !                                       |                 |
| Ш     | NRC12730             | SS - Armour Rock Underlayer - Zone A2 - (CH843 to 893)                                                                         | 5    | 16-Apr-14              | 24-Apr-14              | 08-Jan-15                | 13-Jan-15                | 0%     | 2 - (CH843 to 893)                                              |                         |                          |                                         |                 |
| Ш     | NRC12740             | SS - Armour Rock Underlayer - Zone A2 - (CH893 to 956)                                                                         | 5    | 28-Apr-14              | 03-May-14              | 14-Jan-15                | 19-Jan-15                | 0%     | e A2 - (CH893 to 956)                                           |                         |                          |                                         | 1<br>1<br>1     |
|       | NRC12750             | SS - Armour Rock - Zone A2 - (CH793 to 843)                                                                                    | 4    | 05-May-14              | 09-May-14              | 03-Feb-15                | 06-Feb-15                | 0%     | 793 to 843)                                                     |                         |                          |                                         |                 |
|       | NRC12760             | SS - Armour Rock - Zone A2 - (CH843 to 893)                                                                                    | 4    | 10-May-14              | 14-May-14              | 07-Feb-15                | 11-Feb-15                | 0%     | H843 to 893)                                                    | II                      |                          |                                         |                 |
| Ш     | NRC12770             | SS - Armour Rock - Zone A2 - (CH893 to 956)                                                                                    | 4    | 15-May-14              | 19-May-14              | 12-Feb-15                | 16-Feb-15                | 0%     | CH893 to 956)                                                   |                         |                          |                                         |                 |
| Ш     | NRC12780             | SS - Mass Concrete Coping - Zone A2 - (CH793 to 843)                                                                           | 7    | 07-Aug-14              | 14-Aug-14              | 13-Dec-14A               | 19-Dec-14A               | 100%   | - Mass Concrete Coping - Zone A?                                | 6H793 to 843)           |                          |                                         |                 |
|       |                      | SS - Mass Concrete Coping - Zone A2 - (CH843 to 893)                                                                           | 7    | 15-Aug-14              | 22-Aug-14              | 20-Dec-14A               | 06-Feb-15                | 44%    | SS - Mass Concrete Coping - Zone A2                             |                         |                          | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |                 |
|       |                      | SS - Mass Concrete Coping - Zone A2 - (CH893 to 956)                                                                           | 7    | 23-Aug-14              | 30-Aug-14              | 07-Feb-15                | 14-Feb-15                | 0%     | SS - Mass Concrete Coping - Zone                                | A2 - (CH893¦to 956<br>! | )                        |                                         |                 |
|       |                      | Sloping - Rockfill Type A - Zone A2 - (CH843 to 893)                                                                           | 1    | 16-Apr-14              | 16-Apr-14              | 08-Nov-14A               | 13-Nov-14A               | 100%   | 43 to 893)                                                      |                         |                          |                                         |                 |
| Ш     |                      | Sloping - Rockfill Type A - Zone A2 - (CH893 to 956)                                                                           | 2    | 28-Apr-14              | 28-Apr-14              | 21-Nov-14A               | 21-Nov-14A               | 100%   | CH893 to 956)                                                   |                         |                          |                                         |                 |
|       |                      | Sloping - Geotextile - Zone A2 - (CH893 to 956)  Sloping - Granular Filter - Zone A2 - (CH793 to 843)                          | 3    | 29-Apr-14<br>12-Apr-14 | 30-Apr-14<br>15-Apr-14 | 21-Nov-14A<br>29-Oct-14A | 21-Nov-14A<br>31-Oct-14A | 100%   | 93 to 956)                                                      |                         |                          |                                         |                 |
|       |                      | Sloping - Granular Filter - Zone A2 - (CH843 to 893)                                                                           | 3    | 23-Apr-14              | 25-Apr-14              | 24-Oct-14A               | 13-Nov-14A               | 100%   | 93 to 843)<br>H843 to 893)                                      |                         |                          |                                         |                 |
|       |                      | Sloping - Granular Filter - Zone A2 - (CH893 to 956)                                                                           | 3    | 02-May-14              | 05-May-14              | 22-Nov-14A               | 22-Nov-14A               | 100%   | (CH893 to 956)                                                  |                         |                          |                                         |                 |
| Н     | Reclamat             | ion                                                                                                                            |      | ·                      | ŕ                      |                          |                          |        |                                                                 |                         |                          |                                         |                 |
|       |                      | Public Fill - Zone A2 - (CH843 to 893) to -2.5mPD                                                                              | 6    | 11-Jul-14              | 17-Jul-14              | 03-Oct-14A               | 04-Nov-14A               | 100%   | Zone A2 - (CH843 to 893) to -2.5m PD                            |                         |                          |                                         |                 |
| Н     | NRC13030             | Public Fill - Zone A2 - (CH893 to 956) to -2.5mPD                                                                              | 4    | 18-Jul-14              | 22-Jul-14              | 03-Nov-14A               | 06-Dec-14A               | 100%   | - Zone A2;- (CH893;to 956) to -2.5mP                            |                         |                          |                                         |                 |
|       | NRC13050             | Public Fill - Zone A2 - (CH843 to 893) to +2.5mPD                                                                              | 7    | 11-Aug-14              | 18-Aug-14              | 24-Oct-14A               | 14-Nov-14A               | 100%   | ublic Fill -¦Zone A2 -¦(CH843 to 893) to                        | +2.5mPD                 |                          | į                                       |                 |
|       | NRC13070             | Public Fill- Zone A2 - (CH893 to 956) to +2.5mPD                                                                               | 6    | 19-Aug-14              | 25-Aug-14              | 13-Nov-14A               | 10-Dec-14A               | 100%   | Public Fill- Zone A2 - (CH893 to 956)                           | to +2.5mPD              |                          |                                         |                 |
|       | NRC13080             | Public Fill - Zone A2 - (CH793 to 843) to +6.0mPD                                                                              | 7    | 11-Aug-14              | 18-Aug-14              | 18-Oct-14A               | 31-Oct-14A               | 100%   | ublic Fill - Zone A2 - (CH793 to 843) to                        | +6.0mPD                 |                          |                                         |                 |
|       | NRC13090             | Public Fill - Zone A2 - (CH843 to 893) to +6.0mPD                                                                              | 7    | 19-Aug-14              | 26-Aug-14              | 02-Nov-14A               | 13-Dec-14A               | 100%   | Public Fill - Zone A2 - (CH843 to 893                           | to +6.0mPD              |                          |                                         | 1               |
| Ш     | NRC13100             | Public Fill - Zone A2 - (CH893 to 956) to +6.0mPD                                                                              | 6    | 27-Aug-14              | 02-Sep-14              | 02-Dec-14A               | 09-Dec-14A               | 100%   | Public Fill - Zone A2 - (CH893 to 9                             | 56) to +6.0mPD          |                          |                                         |                 |
|       | NRC13110             | Public Fill - Zone A2 - (CH793 to 843) to +10mPD                                                                               | 6    | 22-Oct-14              | 28-Oct-14              | 13-Dec-14A               | 15-Dec-14A               | 100%   | Public Fill - Zon                                               | A2 - (CH793 to 8        | 43) to +10mPD            |                                         |                 |
|       | NRC13120             | Public Fill - Zone A2 - (CH843 to 893) to +10mPD                                                                               | 7    | 29-Oct-14              | 05-Nov-14              | 20-Dec-14A               | 07-Feb-15                | 43%    | Public Fill - Z                                                 | one A2 - (CH 843 to     | 893) to +10m P           | D                                       |                 |
|       | NRC13130             | Public Fill - Zone A2 - (CH893 to 956) to +10m PD                                                                              | 4    | 06-Nov-14              | 10-Nov-14              | 09-Feb-15                | 12-Feb-15                | 0%     | Public Fill -                                                   | Zone A2 - (CH893        | to 956) to +10m          | PD                                      |                 |
|       | NRC15390             | Surcharge Period - Zone A2 - (CH793 to 843)                                                                                    | 180  | 11-Nov-14              | 09-May-15              | 13-Feb-15                | 11-Aug-15                | 0%     |                                                                 |                         | 1 1                      | Sı.                                     | urcharge Per    |
|       | NRC16960             | NewActivity                                                                                                                    | 0    |                        |                        | 29-Dec-14                | 30-Dec-14                | 0%     |                                                                 |                         |                          |                                         |                 |
| Ш     | Zone F               |                                                                                                                                |      |                        |                        |                          |                          |        |                                                                 |                         |                          |                                         |                 |
| Ш     | CH184 to             |                                                                                                                                |      |                        |                        |                          |                          |        |                                                                 |                         |                          |                                         |                 |
| Ш     |                      | F - Anchor wall Installation - C H184 to CH231                                                                                 | 4    | 10-Mar-14              | 13-Mar-14              | 29-Dec-14                | 02-Jan-15                | 0%     |                                                                 |                         |                          |                                         |                 |
|       |                      | F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH184 to CH231                                                  | 3    | 14-Mar-14              | 16-Mar-14              | 03-Jan-15                | 05-Jan-15                | 0%     | or Wall- CH184 to CH231                                         |                         |                          |                                         | <br>            |
|       |                      | F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall- CH184 to CH231                                                 | 2    | 17-Mar-14              | 18-Mar-14              | 06-Jan-15                | 07-Jan-15                | 0%     | chor Wall-¦ CH184 to CH231                                      |                         |                          |                                         |                 |
| Ш     |                      | F - Backfilling up to +6.0mPD to Anchor Wall - CH184 to CH231  F - Backfilling to +6.0mPD to Existing Seawall - CH184 to CH231 | 1    | 19-Mar-14<br>21-Mar-14 | 20-Mar-14<br>21-Mar-14 | 08-Jan-15<br>10-Jan-15   | 09-Jan-15<br>10-Jan-15   | 0%     | 84 to CH231                                                     |                         |                          |                                         |                 |
| Ш     |                      |                                                                                                                                | ı    | 21-Ividi - 14          | 21-IVId1-14            | 10-541-15                | 10-041-15                | 076    | 184 to CH231                                                    |                         |                          |                                         |                 |
| Н     | CH231 to<br>A6416273 | F - Backfilling up to +0.5mPD & T3 Installation - CH231 to CH278                                                               | 6    | 28-Mar-14              | 02-Apr-14              | 13-Jan-15                | 18-Jan-15                | 0%     | CH231 to CH278                                                  |                         |                          |                                         |                 |
|       |                      | F - Backfilling up to +3.0mPD - CH231 to CH278                                                                                 | 2    | 03-Apr-14              | 04-Apr-14              | 19-Jan-15                | 20-Jan-15                | 0%     | 78                                                              | 1                       |                          |                                         |                 |
|       |                      | F - Backfilling up to +6.0mPD - CH231 to CH278                                                                                 | 2    | 05-Apr-14              | 06-Apr-14              | 21-Jan-15                | 22-Jan-15                | 0%     | 278                                                             |                         |                          | !                                       |                 |
| Н     | A6416310             | F - Anchor wall Installation - C H231 to CH278                                                                                 | 4    | 07-Apr-14              | 10-Apr-14              | 23-Jan-15                | 27-Jan-15                | 0%     | 8                                                               |                         |                          |                                         |                 |
| Н     | A6416480             | F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH231 to CH278                                                  | 3    | 11-Apr-14              | 13-Apr-14              | 28-Jan-15                | 30-Jan-15                | 0%     | on to Anchor Wall- CH231 to CH278                               |                         |                          |                                         |                 |
|       |                      | F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH231 to                                                      | 2    | 14-Apr-14              | 15-Apr-14              | 31-Jan-15                | 01-Feb-15                | 0%     | tion to Anchor Wall - CH231 to CH278                            |                         |                          |                                         |                 |
| Н     |                      | CH278 F - Backfilling up to +6.0mPD to Anchor Wall - CH231 to CH278                                                            | 2    | 16-Apr-14              | 17-Apr-14              | 02-Feb-15                | 03-Feb-15                | 0%     | all - CH231 to CH278                                            |                         |                          |                                         |                 |
|       | A6416510             | F - Backfilling to +6.0mPD to Existing Seawall - CH231 to CH278                                                                | 1    | 18-Apr-14              | 18-Apr-14              | 04-Feb-15                | 04-Feb-15                | 0%     | wall - CH231 to CH278                                           |                         |                          |                                         |                 |
|       | CH278 to             | CH327                                                                                                                          |      |                        |                        |                          |                          |        |                                                                 |                         |                          |                                         |                 |
|       | A6416195             | F - Marine Sheet Piling (H2) - CH278 to CH327                                                                                  | 5    | 12-Mar-14              | 17-Mar-14              | 28-Oct-14A               | 05-Nov-14A               | 100%   |                                                                 | +                       |                          |                                         |                 |
|       | A6416200             | F - Backfilling up to -3.5mPD & T2 Installation - CH278 to CH327                                                               | 5    | 18-Mar-14              | 22-Mar-14              | 15-Dec-14A               | 24-Dec-14A               | 100%   | 1278 to CH327                                                   | 4                       |                          | 1                                       |                 |
|       | A6416210             | F - Backfilling up to +0.5mPD - CH278 to CH327                                                                                 | 4    | 23-Mar-14              | 26-Mar-14              | 09-Jan-15                | 12-Jan-15                | 0%     |                                                                 |                         |                          |                                         |                 |
|       | A6416215             | F - Backfilling up to +3.0mPD & T4 Installation - CH278 to CH327                                                               | 5    | 27-Mar-14              | 31-Mar-14              | 14-Jan-15                | 18-Jan-15                | 0%     | CH278 to CH327                                                  |                         |                          |                                         |                 |
|       | A6416220             | F - Backfilling up to +6.0mPD - CH278 to CH327                                                                                 | 2    | 01-Apr-14              | 02-Apr-14              | 19-Jan-15                | 20-Jan-15                | 0%     | 7                                                               | 1 1                     |                          |                                         |                 |
|       | A6416340             | F - Anchor wall Installation - C H278 to CH327                                                                                 | 4    | 11-Apr-14              | 15-Apr-14              | 28-Jan-15                | 31-Jan-15                | 0%     | 327                                                             |                         |                          | !                                       |                 |
|       | A6416520             | F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall - CH278 to CH327                                                 | 3    | 16-Apr-14              | 18-Apr-14              | 01-Feb-15                | 03-Feb-15                | 0%     | ion to Anchor Wall - CH278 to CH327                             |                         |                          |                                         | :<br>:<br>:     |
|       | A6416530             | F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH278 to CH327                                                | 3    | 19-Apr-14              | 21-Apr-14              | 04-Feb-15                | 06-Feb-15                | 0%     | lation to Anchor Wall - CH278 to CH32                           | 27                      |                          | <br>                                    |                 |
| Page  | 3 of 14              | Planned Bar                                                                                                                    |      |                        |                        |                          |                          |        |                                                                 | Date 21-Feb-14 TMCLk    | Revision<br>//DBJ/GEN/PR |                                         | Approved<br>WYu |
| Proi  | ect ID: TMCI K       | DWPB 14W51 Planned Bar                                                                                                         |      |                        |                        | <b>.</b>                 |                          |        |                                                                 | .i-i eu-14   HVIULK     | VDW/GEN/PK               | . μοτα [V                               | , v iu          |
| D-4-  | _                    | ◆ Planned Milestone                                                                                                            | IMCL | κ - Northern           | Connection             | n Sub-Sea Tu             | nnel Sectio              |        | 春寶嘉<br>港寶嘉<br>Dragages BOUYGUES                                 |                         |                          |                                         |                 |

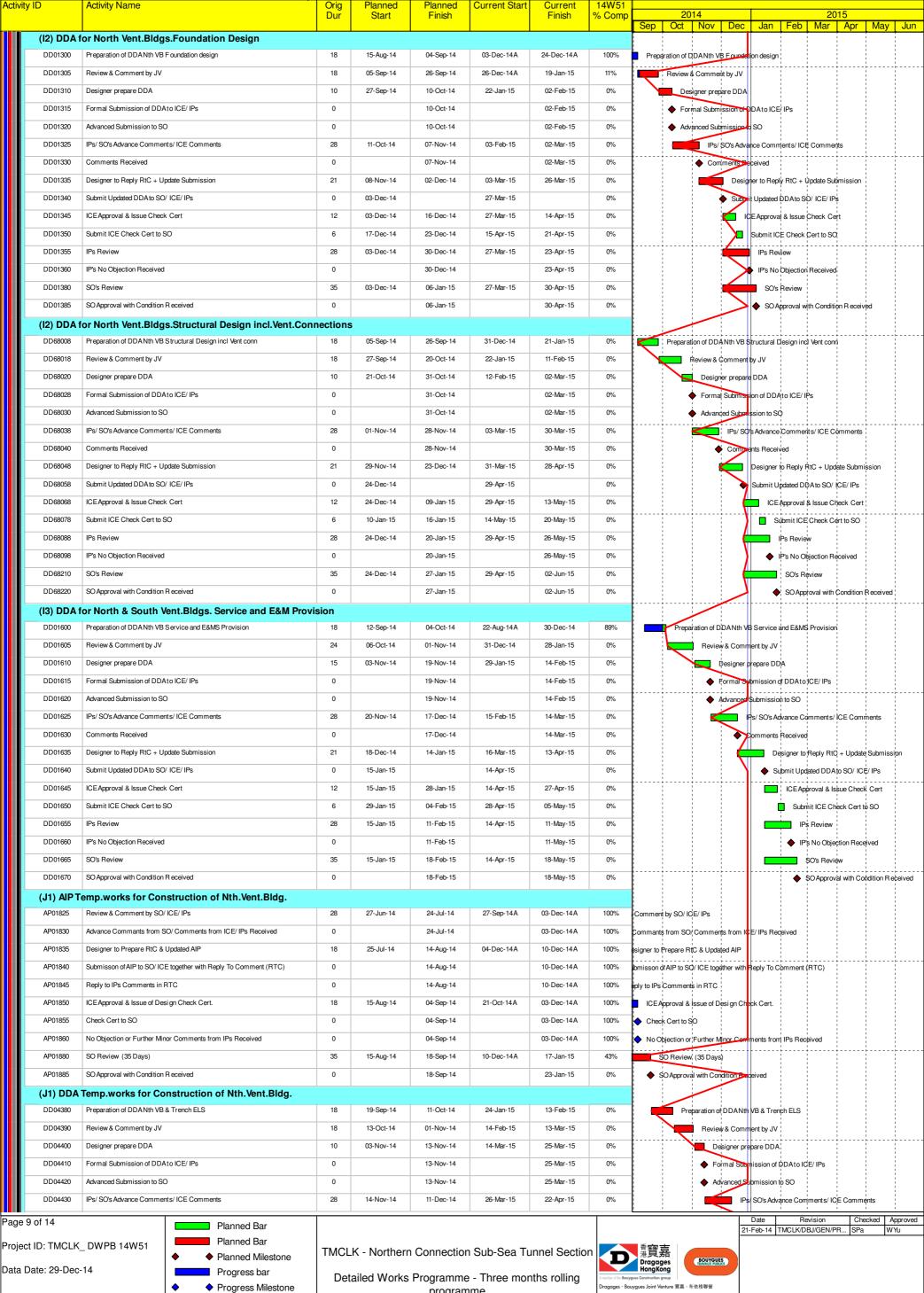

Data Date: 29-Dec-14

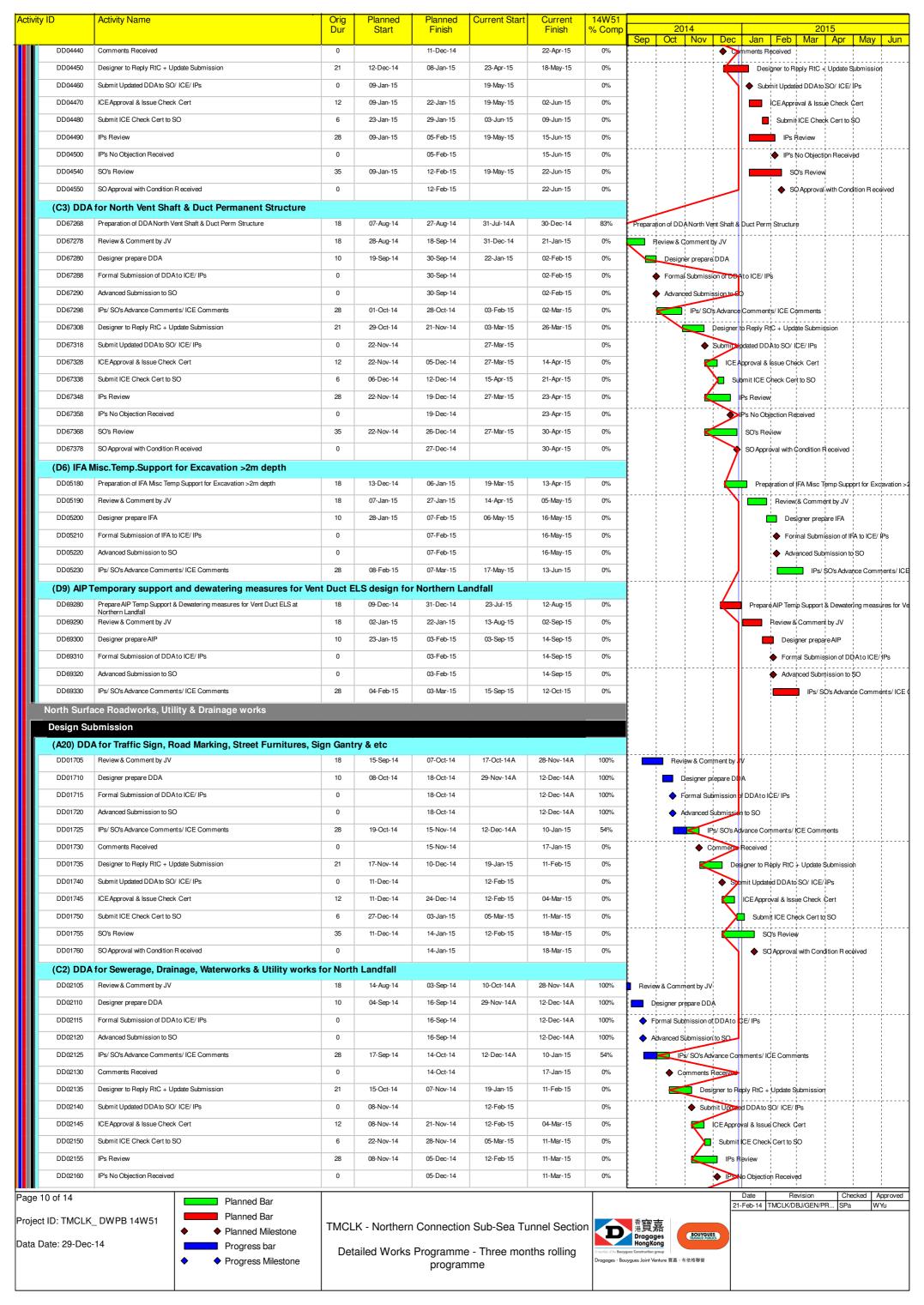

Planned Milestone Progress bar ◆ Progress Milestone

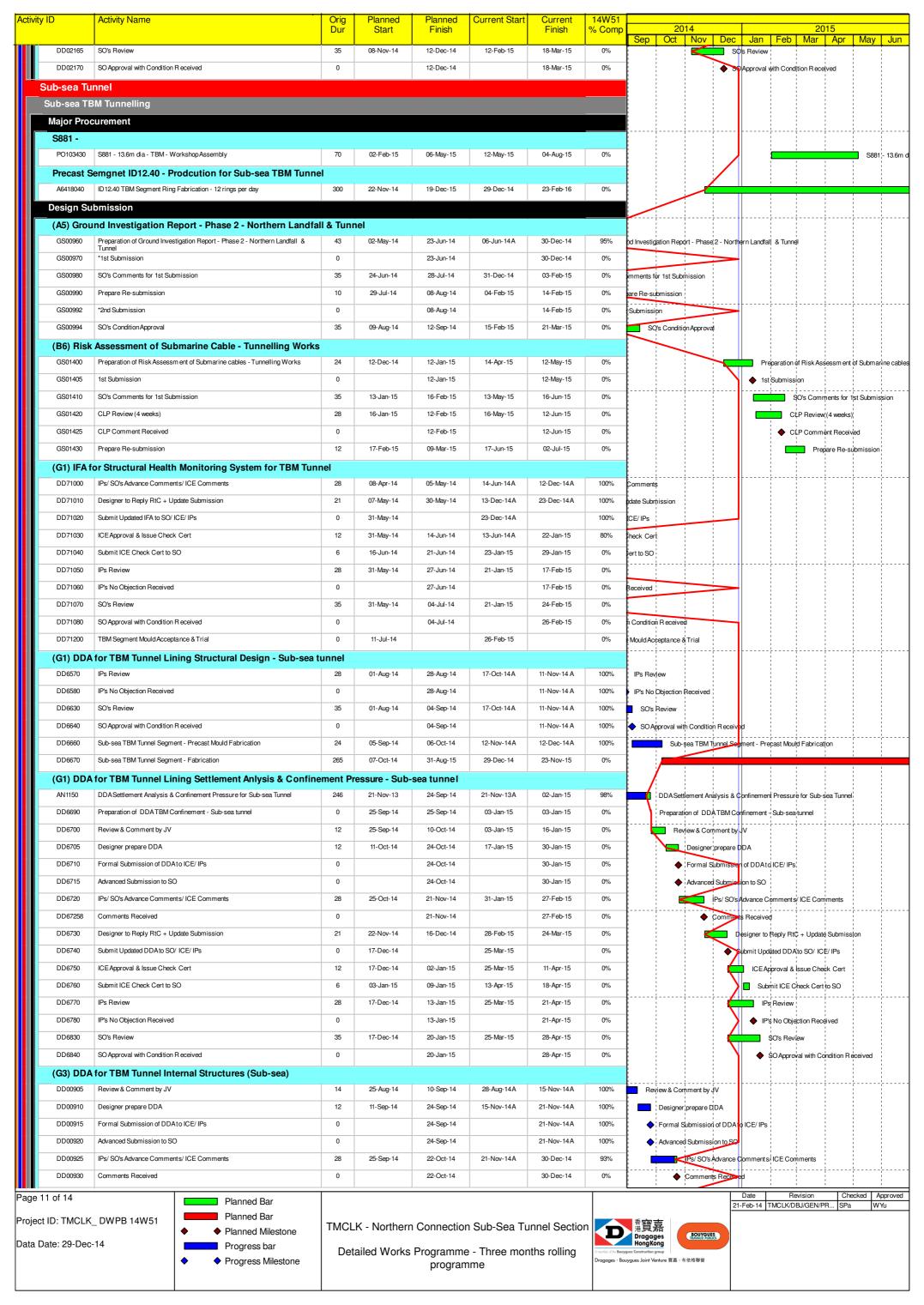

Detailed Works Programme - Three months rolling programme

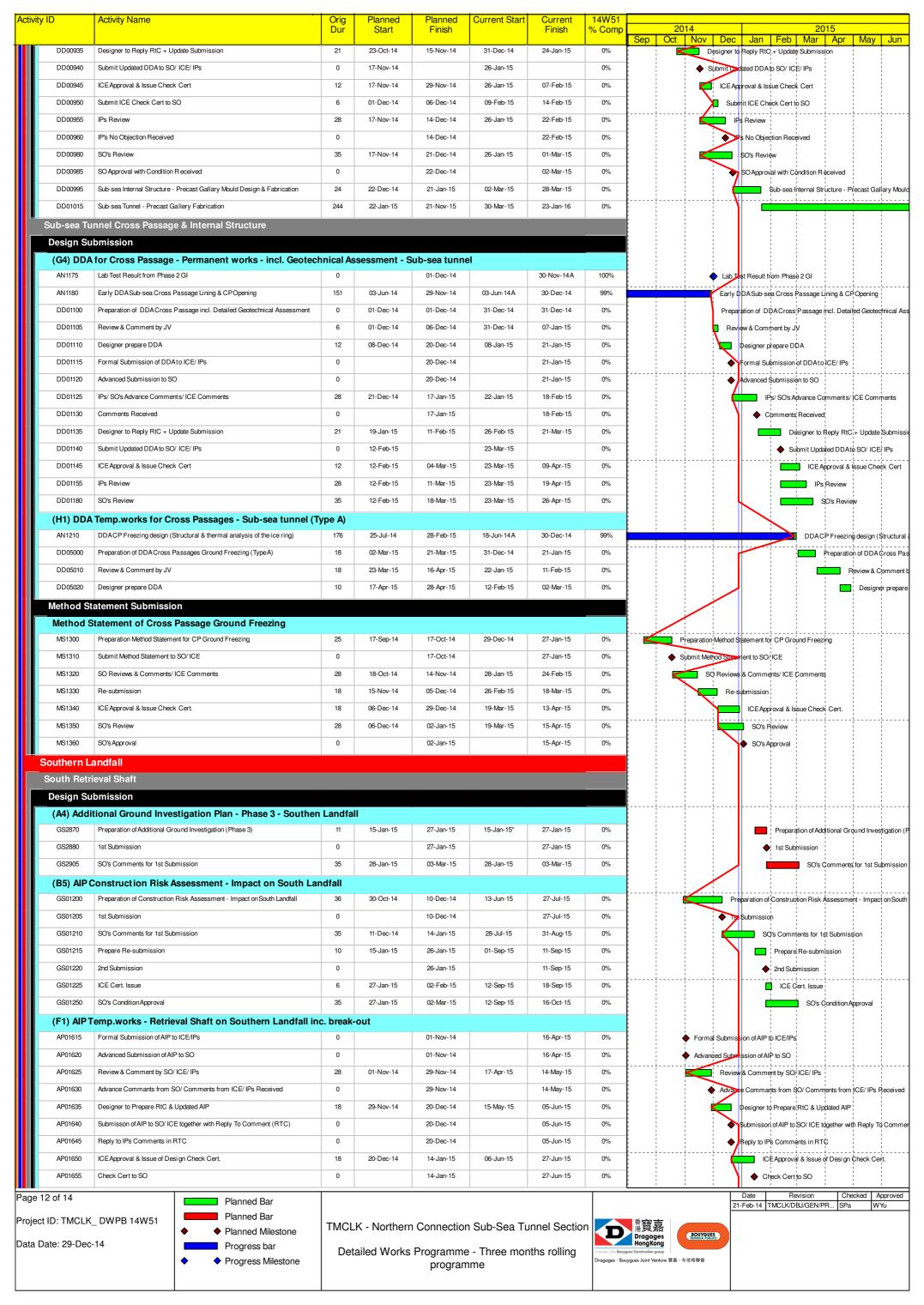


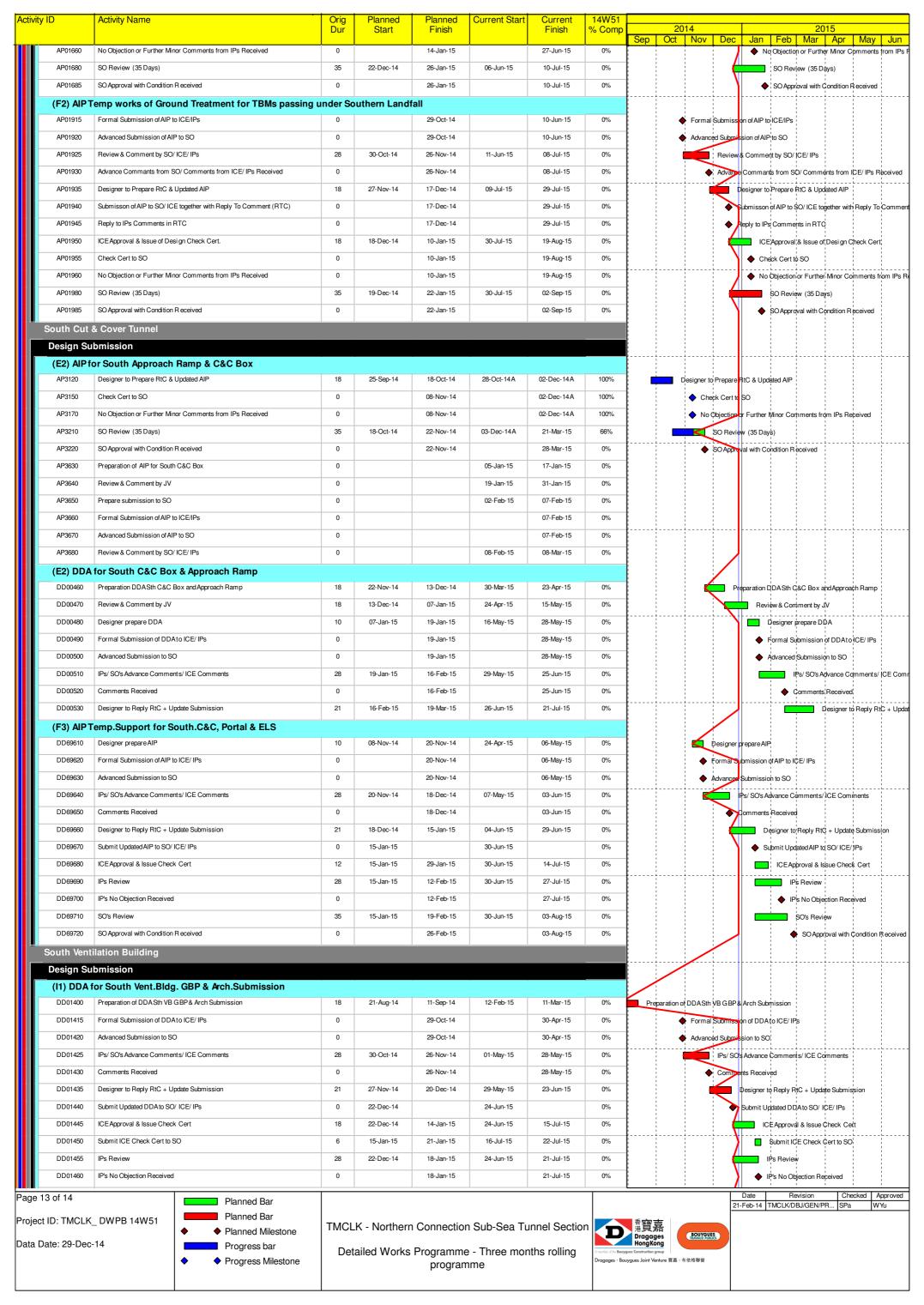



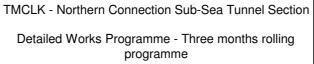



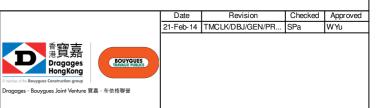










| tivity ID  | Activity Name                                                 | Orig         | Planned    | Planned   | Current Start | Current   | 14W 51 |     |     |     |         |            |                |               |                |              |
|------------|---------------------------------------------------------------|--------------|------------|-----------|---------------|-----------|--------|-----|-----|-----|---------|------------|----------------|---------------|----------------|--------------|
|            |                                                               | Dur          | Start      | Finish    |               | Finish    | % Comp |     |     | 014 |         |            |                | 2015          |                |              |
| (= t= t    |                                                               |              |            |           |               |           |        | Sep | Oct | Nov | Dec     | Jan        | Feb N          | ∕lar A        | pr Ma          | ay Jun       |
| DD01465    | SO's Review                                                   | 35           | 22-Dec-14  | 25-Jan-15 | 24-Jun-15     | 28-Jul-15 | 0%     |     |     |     | (       |            | SO's Review    | v             |                |              |
| DD01470    | SO Approval with Condition R eceived                          | 0            |            | 26-Jan-15 |               | 28-Jul-15 | 0%     |     |     |     | \       | •          | SO Approva     | l with Cond   | lition R eceiv | red !        |
| (I2) DDA   | for South Vent.Bldg.Structural Design incl.Vent.C             | Connections  |            |           |               |           | ,      |     |     |     |         |            |                |               |                | <del>-</del> |
| DD67808    | Preparation of DDASth VB Structural Design incl. Vent Conn    | 18           | 28-Jan-15  | 17-Feb-15 | 29-Jul-15     | 18-Aug-15 | 0%     |     |     |     |         |            | Prep           | paration of I | DDA Sth VE     | Structural [ |
| DD67818    | Review & Comment by JV                                        | 18           | 18-Feb-15  | 17-Mar-15 | 19-Aug-15     | 08-Sep-15 | 0%     |     |     |     |         |            |                | Revie         | w & Comm       | ent by JV    |
| South Surf | ace Roadworks, Utility & Drainage works                       |              |            | I         |               |           |        |     |     |     |         |            |                |               |                |              |
| Design Su  | ıbmission                                                     |              |            |           |               | _         |        |     |     |     |         |            |                |               |                |              |
| (E3) DDA   | for Sewerage, Drainage, Waterworks & Utility wo               | rks for Sout | h Landfall |           |               |           | _      |     |     |     | :       |            |                |               |                |              |
| DD05810    | Preparation of DDA Sewerage & Drainage works for Sth Landfall | 18           | 08-Nov-14  | 28-Nov-14 | 12-Feb-15     | 11-Mar-15 | 0%     |     |     |     | Prepara | tion of DI | Sewerage 8     | & Drainage    | works for S    | h Landfall   |
| DD05820    | Review & Comment by JV                                        | 18           | 29-Nov-14  | 19-Dec-14 | 12-Mar-15     | 01-Apr-15 | 0%     |     |     |     |         | Review &   | Comment by     | JV            |                |              |
| DD05830    | Designer prepare DDA                                          | 10           | 20-Dec-14  | 03-Jan-15 | 02-Apr-15     | 17-Apr-15 | 0%     |     |     |     |         | Desi       | gner prepare D | DA            |                |              |
| DD05840    | Advanced Submission to SO                                     | 0            |            | 03-Jan-15 |               | 17-Apr-15 | 0%     |     |     |     | \       | Adva       | nbed Submiss   | ion to \$O    |                | ;<br>;<br>;  |
| DD05850    | Formal Submission of DDAto ICE/ IPs                           | 0            |            | 03-Jan-15 |               | 17-Apr-15 | 0%     |     |     |     |         | Forn       | nal Submission | n of DDAto    | ICE/ Ps        |              |
| DD05860    | IPs/ SO's Advance Comments/ ICE Comments                      | 28           | 04-Jan-15  | 31-Jan-15 | 18-Apr-15     | 15-May-15 | 0%     |     |     |     | -       |            | IPs/SO's       | Advance Co    | omme¦nts/lo    | CE Commer    |
| DD05870    | Comments Received                                             | 0            |            | 31-Jan-15 |               | 15-May-15 | 0%     |     |     |     | 1       |            | Comment        | s Received    | 1              | 1<br>1<br>1  |
| DD05880    | Designer to Reply RtC + Update Submission                     | 21           | 02-Feb-15  | 04-Mar-15 | 16-May-15     | 10-Jun-15 | 0%     |     |     | -   | 1       |            |                | Designer t    | to Reply Rt0   | C + Update S |







# Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                         | Location/ Timing                                                                           | Implementation<br>Agent | Relevant Standard or Requirement                | Imp | tion | Status * |          |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|-----|------|----------|----------|
|               | Reference      |                                                                                                                                                                                                                                                                           |                                                                                            |                         |                                                 | D   | C    | O        |          |
| Air Quality   |                |                                                                                                                                                                                                                                                                           |                                                                                            |                         |                                                 |     |      |          |          |
| 4.8.1         | 3.8            | An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;                                                                             | construction period                                                                        | Contractor              | TMEIA Avoid smoke<br>impacts and<br>disturbance |     | Y    |          | <b>✓</b> |
| 4.8.1         | 3.8            | Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.                                                                                           |                                                                                            | Contractor              | TMEIA Avoid dust generation                     |     | Y    |          | <b>√</b> |
| 4.8.1         | 3.8            | The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels. | construction period                                                                        | Contractor              | TMEIA Avoid dust generation                     |     | Y    |          | <b>√</b> |
| 4.8.1         | 3.8            | The Contractor shall not burn debris or other materials on the works areas.                                                                                                                                                                                               | All areas / throughout construction period                                                 | Contractor              | TMEIA Avoid dust generation                     |     | Y    |          | <b>√</b> |
| 4.8. 1        | 3.8            | In hot, dry or windy weather, the watering programme shall maintair all exposed road surfaces and dust sources wet.                                                                                                                                                       | All unpaved haul roads /<br>throughout construction period<br>in hot, dry or windy weather | Contractor              | TMEIA Avoid smoke<br>impacts and<br>disturbance |     | Y    |          | <b>*</b> |
| 4.8.1         | 3.8            | Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.         | construction period                                                                        | Contractor              | TMEIA Avoid dust generation                     |     | Y    |          | <b>√</b> |
| 4.8. 1        | 3.8            | Open dropping heights for excavated materials shall be controlled to<br>a maximum height of 2m to minimise the fugitive dust arising from<br>unloading.                                                                                                                   |                                                                                            | Contractor              | TMEIA Avoid dust generation                     |     | Y    |          | <b>~</b> |
| 4.8.1         | 3.8            | During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.                                                                                                         |                                                                                            | Contractor              | TMEIA Avoid dust<br>generation                  |     | Y    |          | <b>*</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference                  | EM&A<br>Manual   | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location/ Timing                                                   | Implementation<br>Agent | Relevant Standard or Requirement | Imp | olementa<br>Stages | tion | Status * |
|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|----------------------------------|-----|--------------------|------|----------|
|                                | Reference        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                         |                                  | D   | C                  | O    |          |
| 4.8.1                          | 3.8              | Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.                                                                                                                                                                                                    | construction period                                                | Contractor              | TMEIA Avoid dust<br>generation   |     | Y                  |      | <b>~</b> |
| 4.8.1                          | 3.8              | No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.                                                                                                                                                                                                                                                                                                         |                                                                    | Contractor              | TMEIA Avoid dust                 |     | Y                  |      | <b>√</b> |
| 4.8.1                          | 3.8              | Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.                                                                                                                                                                                                                                                                                                                                                    | All exposed surfaces /<br>throughout construction period           | Contractor              | TMEIA Avoid dust generation      |     | Y                  |      | <b>√</b> |
| 4.8.1                          | 3.8              | All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.                                                                                                                                                                                                                                                                                                                                                                       | All areas / throughout<br>construction period                      | Contractor              | TMEIA Avoid dust generation      |     | Y                  |      | <>       |
| 4.11                           | Section 3        | EM&A in the form of 1 hour and 24 hour dust monitoring and site audit.                                                                                                                                                                                                                                                                                                                                                                                                               | All representative existing ASRs  / throughout construction period | Contractor              | EM&A Manual                      |     | Y                  |      | ~        |
| WATER QUAL                     | ITY              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                         |                                  |     |                    |      |          |
| Marine Works (Seq              | <i>јиепсе А)</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                         |                                  |     |                    |      |          |
| 6.1                            | Annex A          | Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: |                                                                    | Contractor              | TM-EIAO                          |     | Y                  |      | *        |
| Figure 6.2a<br>Appendix<br>D6a |                  | - TM-CLKL northern reclamation;                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                         |                                  |     |                    |      |          |
| 6.1                            | -                | a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.                                                                                                                                                                                                                                                                                                                                                           | TM-CLKL seawall filling                                            | Contractor              | TM-EIAO                          |     | Y                  |      | ✓        |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | Manual    | Environmental Protection Measures                                                                                                                                                   | Location/ Timing                              | Implementation<br>Agent | Relevant Standard or Requirement                                   | Imp | lementat<br>Stages | ion | Status * |
|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|--------------------------------------------------------------------|-----|--------------------|-----|----------|
|               | Reference |                                                                                                                                                                                     |                                               |                         |                                                                    | D   | С                  | О   |          |
| 6.1           | -         | a maximum of 30% public fill to be used for reclamation filling below<br>+2.5mPD for TM-CLKL southern landfall                                                                      | TM-CLKL southern landfall reclamation filling | Contractor              | TM-EIAO                                                            |     | Y                  |     | N/A      |
| 6.1           | -         | a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall                                                                        | TM-CLKL northern landfall reclamation filling | Contractor              | TM-EIAO                                                            |     | Y                  |     | <b>✓</b> |
| 6.1           | -         | Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.                                                                | All areas dredging works                      | Contractor              | TM-EIAO                                                            |     | Y                  |     | <b>✓</b> |
|               | Annex C   | A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual. |                                               | Contractor              | TM-EIAO                                                            |     | Y                  |     | <b>✓</b> |
| 6.1           | -         | Trailer suction hopper dredgers shall not allow mud to overflow.                                                                                                                    | All areas/ throughout construction period     | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.          |     | Y                  |     | <b>✓</b> |
| 6.1           | -         | The use of Lean Material Overboard (LMOB) systems shall be prohibited.                                                                                                              | All areas/ throughout construction period     | Contractor              | Marine Fill<br>Committee<br>Guidelines. DASO<br>permit conditions. |     | Y                  |     | ✓        |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference                  | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location/ Timing                       | Implementation<br>Agent | Relevant Standard or Requirement | Imp | olementa<br>Stages | tion | Status * |
|--------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------|-----|--------------------|------|----------|
|                                | Reference      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                         |                                  | D   | C                  | 0    |          |
| 6.1                            | Annex A        | For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: | Portion D of HKBCF and HKLR            | Contractor              | TM-EIAO                          |     | Y                  |      | <b>✓</b> |
| Figure 6.2b<br>Appendix<br>D6b |                | <ul> <li>TM-CLKL northern reclamation;</li> <li>Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and</li> <li>Reclamation dredging and filling for Portion 1 of HKLR;</li> </ul>                                                                                                                                                                                                                                                                                                                                 |                                        |                         |                                  |     |                    |      |          |
| 6.1                            | -              | The filling material for the other parts of the works are the same as Sequence A;                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All other areas/backfilling<br>works   | Contractor              | TM-EIAO                          |     | Y                  |      | N/A      |
| 6.1                            | 5.7            | Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.                                                                                                                                                                                                                                                                                                                      | grab dredging                          | Contractor              | TM-EIAO                          |     | Y                  |      | <b>✓</b> |
| 6.1                            | Annex A        | A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All areas/ through out marine<br>works | Contractor              | TM-EIAO                          |     | Y                  |      | <b>√</b> |
| 6.1                            | -              | TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;                                                                                                                                                                                                                                                                                                                 |                                        | Contractor              | TM-EIAO                          |     | Y                  |      | <b>V</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference    | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                    | Location/ Timing                                    | Implementation<br>Agent | Relevant Standard or Requirement                                      | Imj | plementa<br>Stages | tion | Status * |
|------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------------------------------------|-----|--------------------|------|----------|
|                  | Reference      |                                                                                                                                                                                                                                                                      |                                                     |                         |                                                                       | D   | C                  | O    |          |
| General Marine W | orks           |                                                                                                                                                                                                                                                                      |                                                     |                         |                                                                       |     |                    |      |          |
| 6.1              | -              | Use of TBM for the construction of the submarine tunnel.                                                                                                                                                                                                             | Tunnel works / Construction phase                   | Contractor              | TM-EIAO                                                               |     | Y                  |      | N/A      |
| 6.1              | -              | Export dredged spoils from NWWCZ.                                                                                                                                                                                                                                    | All areas as much as possible / dredging activities | Contractor              | DASO Permit conditions                                                |     | Y                  |      | <b>✓</b> |
| 6.1              | -              | Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%                                                                                                                                               | All areas/ backfilling works                        | Contractor              | TM-EIAO                                                               |     | Y                  |      | N/A      |
| 6.1              | -              | Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.                                                                                                                                                   | All areas/ backfilling works                        | Contractor              | TM-EIAO                                                               |     | Y                  |      | N/A      |
| 6.1              | -              | Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.                                                                                                                                                      | All areas/ throughout construction period           | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.             |     | Y                  |      | <b>✓</b> |
| 6.1              | -              | Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.                                                                                                                                                   | All areas/ throughout construction period           | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.             |     | Y                  |      | <b>~</b> |
| 6.1              | -              | Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.                                                                                                                                                                        | All areas/ throughout construction period           | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.             |     | Y                  |      | <b>√</b> |
| 6.1              | -              | Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation. | construction period                                 | Contractor              | Marine Fill<br>Committee<br>Guidelines. DASO<br>permit<br>conditions. |     | Y                  |      | <b>~</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                     | Location/ Timing                          | Implementation<br>Agent | Relevant Standard or Requirement                                      | Imj | olementa<br>Stages | tion | Status * |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|-----------------------------------------------------------------------|-----|--------------------|------|----------|
|               | Reference      |                                                                                                                                                                                                                                       |                                           |                         |                                                                       | D   | C                  | О    |          |
| 6.1           | -              | Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.                                                                                                        | All areas/ throughout construction period | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.             |     | Y                  |      | <b>✓</b> |
| 6.1           | -              | Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;                                                                                                                       | All areas/ throughout construction period | Contractor              | Marine Fill<br>Committee<br>Guidelines. DASO<br>permit<br>conditions. |     | Y                  |      | N/A      |
| 6.1           | -              | All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. | construction period                       | Contractor              | Marine Fill Committee Guidelines. DASO permit conditions.             |     | Y                  |      | N/A      |
| 6.1           | -              | The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.                                                                                   |                                           | Contractor              | Marine Fill<br>Committee<br>Guidelines. DASO<br>permit<br>conditions. |     | Y                  |      | <b>✓</b> |
| 6.1           | 5.2            | Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.                                                                                                  | All areas/ throughout construction period | Contractor              | TM-EIAO                                                               |     | Y                  |      | <b>✓</b> |
| 6.1           | -              | The daily maximum production rates shall not exceed those assumed in the water quality assessment.                                                                                                                                    | All areas/ throughout construction period | Contractor              | TM-EIAO                                                               |     | Y                  |      | <b>√</b> |
| 6.1           | -              | The dredging and filling works shall be scheduled to spread the works evenly over a working day.                                                                                                                                      | All areas/ throughout construction period | Contractor              | TM-EIAO                                                               |     | Y                  |      | <b>√</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                        | Location/ Timing                          | Implementation<br>Agent | Relevant Standard or Requirement | Imp | olementat<br>Stages |   | Status * |
|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------|-----|---------------------|---|----------|
| 7 1747 1      | Reference      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |                                  | D   | C                   | 0 |          |
| Land Works    |                |                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |                                  |     |                     |   |          |
| 6.1           | 1              | Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.                                                                                                                                                                                                                                                                                  | All areas/ throughout construction period | Contractor              | TM-EIAO                          |     | Y                   |   | <b>~</b> |
| 6.1           | -              | Sewage effluent and discharges from on-site kitchen facilities shall<br>be directed to Government sewer in accordance with the<br>requirements of the WPCO or collected for disposal offsite. The use<br>of soakaways shall be avoided.                                                                                                                                                                  | construction period                       | Contractor              | TM-EIAO                          |     | Y                   |   | <b>✓</b> |
| 6.1           | -              | Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks. |                                           | Contractor              | TM-EIAO                          |     | Y                   |   | ~        |
| 6.1           | -              | Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.                                                                                                                                                                                                          |                                           | Contractor              | TM-EIAO                          |     | Y                   |   | <b>√</b> |
| 6.1           | -              | Temporary access roads should be surfaced with crushed stone or gravel.                                                                                                                                                                                                                                                                                                                                  | All areas/ throughout construction period | Contractor              | TM-EIAO                          |     | Y                   |   | ✓        |
| 6.1           | -              | Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.                                                                                                                                                                                                                                                                         |                                           | Contractor              | TM-EIAO                          |     | Y                   |   | <b>√</b> |
| 6.1           | -              | Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.                                                                                                                                                                                                                                                                                | All areas/ throughout construction period | Contractor              | TM-EIAO                          |     | Y                   |   | <>       |
| 6.1           | -              | Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.                                                                                                                                                                                                                                                       |                                           | Contractor              | TM-EIAO                          |     | Y                   |   | <b>√</b> |
| 6.1           | 5.8            | Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.                                                                                                                                    | construction period                       | Contractor              | TM-EIAO                          |     | Y                   |   | <b>~</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun – Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual<br>Reference | Environmental Protection Measures Loc                                                                                                                                                                                                                                                                           | cation/ Timing                           | Implementation<br>Agent | Relevant Standard or Requirement       | · | olementa<br>Stages |   | Status * |
|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|----------------------------------------|---|--------------------|---|----------|
|               | Reference                   |                                                                                                                                                                                                                                                                                                                 |                                          |                         |                                        | D | C                  | О |          |
| 6.1           | -                           | Discharges of surface run-off into foul sewers must always be All prevented in order not to unduly overload the foul sewerage system.                                                                                                                                                                           |                                          | Contractor              | TM-EIAO                                |   | Y                  |   | <b>✓</b> |
| 6.1           | -                           | All vehicles and plant should be cleaned before they leave the All construction site to ensure that no earth, mud or debris is deposited con by them on roads. A wheel washing bay should be provided at every site exit.                                                                                       |                                          | Contractor              | TM-EIAO                                |   | Y                  |   | ✓        |
| 6.1           | -                           | Wheel wash overflow shall be directed to silt removal facilities before All being discharged to the storm drain.                                                                                                                                                                                                | areas/ throughout nstruction period      | Contractor              | TM-EIAO                                |   | Y                  |   | ✓        |
| 6.1           | -                           | Section of construction road between the wheel washing bay and the All public road should be surfaced with crushed stone or coarse gravel.                                                                                                                                                                      | areas/ throughout<br>astruction period   | Contractor              | TM-EIAO                                |   | Y                  |   | <b>√</b> |
| 6.1           | -                           | Wastewater generated from concreting, plastering, internal All decoration, cleaning work and other similar activities, shall be conscreened to remove large objects.                                                                                                                                            | areas/ throughout<br>nstruction period   | Contractor              | TM-EIAO                                |   | Y                  |   | <b>√</b> |
| 6.1           | -                           | Vehicle and plant servicing areas, vehicle wash bays and lubrication All facilities shall be located under roofed areas. The drainage in con these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal. |                                          | Contractor              | TM-EIAO                                |   | Y                  |   | N/A      |
| 6.1           | -                           | The Contractor shall prepare an oil / chemical cleanup plan and All ensure that leakages or spillages are contained and cleaned up con immediately.                                                                                                                                                             |                                          | Contractor              | TM-EIAO                                |   | Y                  |   | <b>√</b> |
| 6.1           | -                           | Waste oil should be collected and stored for recycling or disposal, All in accordance with the Waste Disposal Ordinance.                                                                                                                                                                                        | l areas/ throughout<br>nstruction period | Contractor              | TM-EIAO Waste<br>Disposal<br>Ordinance |   | Y                  |   | <b>√</b> |
| 6.1           | -                           | All fuel tanks and chemical storage areas should be provided with All locks and be sited on sealed areas. The storage areas should be consurrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.                                                                         |                                          | Contractor              | TM-EIAO                                |   | Y                  |   | ✓        |
| 6.1           | -                           | traps prior to discharge to the stormwater system.                                                                                                                                                                                                                                                              | areas/ throughout<br>nstruction period   | Contractor              | TM-EIAO                                |   | Y                  |   | <b>√</b> |
| 6.1           | -                           | Roadside gullies to trap silt and grit shall be provided prior to Roa                                                                                                                                                                                                                                           | adside/design and operation              | Design                  | TM-EIAO                                | Y |                    | Y | ✓        |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference     | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                 | Location/ Timing                                                                                                    | Implementation<br>Agent                                     | Relevant Standard or Requirement | Im | olementa<br>Stages | tion | Status *                                  |
|-------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|----|--------------------|------|-------------------------------------------|
|                   | Reference      | discharging the stormwater into the marine environment. The sumps                                                                                                                                                                                                                                                                                                                 |                                                                                                                     | Consultant/                                                 |                                  | D  | С                  | 0    |                                           |
|                   |                | will be maintained and cleaned at regular intervals.                                                                                                                                                                                                                                                                                                                              |                                                                                                                     | Contractor                                                  |                                  |    |                    |      |                                           |
| 6.1               | Section 5      | All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.                                                                                                                                                                                                                                           | All areas/ throughout construction period                                                                           | Contractor                                                  | EM&A Manual                      |    | Y                  |      | <b>✓</b>                                  |
| Water Quality Mor | iitoring       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |                                                             |                                  |    |                    |      |                                           |
| 6.1               | Section 5      | Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period.  One year operation phase water quality monitoring at designated stations. | as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly | Contractor                                                  | EM&A Manual                      |    | Y                  | Y    | •                                         |
| <b>ECOLOGY</b>    |                |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |                                                             |                                  |    |                    |      |                                           |
| 8.14              | 6.3            | Specification for and implement pre, during and post construction dolphin abundance monitoring.                                                                                                                                                                                                                                                                                   | All Areas/Detailed Design/<br>during construction works/post<br>construction                                        | Design Consultant/<br>Contractor                            | TMEIA                            | Y  | Y                  | Y    | <b>✓</b>                                  |
| 8.14              | 6.3,6.5        | Specification and implementation of 250m dolphin exclusion zone.                                                                                                                                                                                                                                                                                                                  | All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works                        | Design Consultant/<br>Contractor                            | TMEIA                            | Y  | Y                  |      | <b>~</b>                                  |
| 8.15              | 6.3, 6.5       | Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.                                                                                                                                                                                                                                                      | Area of prohibited fishing<br>activities/Detailed<br>Design/towards end of<br>construction period                   | TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor | TMEIA                            | Y  |                    | Y    | N/A.<br>To be<br>implemente<br>d by AFCD. |
| 8.14              | 6.3, 6.5       | Specification and implementation of marine vessel control specifications                                                                                                                                                                                                                                                                                                          | All areas/Detailed<br>Design/during construction<br>works                                                           | Design Consultant/<br>Contractor                            | TMEIA                            | Y  | Y                  |      | <b>√</b>                                  |
| 8.14              | 6.3, 6.5       | Design and implementation of acoustic decoupling methods for dredging and reclamation works                                                                                                                                                                                                                                                                                       | All areas/ Detailed<br>Design/during dredging and<br>reclamation works                                              | Design Consultant/<br>Contractor                            | TMEIA                            | Y  | Y                  |      | <b>√</b>                                  |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                           | Location/ Timing                                                       | Implementation<br>Agent          | Relevant Standard or Requirement | Im | plementa<br>Stages | tion | Status * |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------|----|--------------------|------|----------|
|               | Reference      |                                                                                                                                                                                                                                             |                                                                        |                                  |                                  | D  | С                  | O    |          |
| 8.15          | 6.3, 6.4       | Pre-construction phase survey and coral translocation                                                                                                                                                                                       | Detailed Design/Prior to construction                                  | Design Consultant/<br>Contractor | TMEIA                            | Y  | Y                  |      | <b>√</b> |
| 8.15          | 6.5            | Audit coral translocation success                                                                                                                                                                                                           | Post translocation                                                     | Contractor                       | TMEIA                            |    | Y                  |      | ✓        |
| 7.13          | 6.5            | The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.                                                                                                                     | All areas /<br>As soon as accessible                                   | Contractor                       | TMEIA                            |    | Y                  |      | N/A      |
| 7.13          | 6.5            | Spoil heaps shall be covered at all times.                                                                                                                                                                                                  | All areas / Throughout construction period                             | Contractor                       | TMEIA                            |    | Y                  |      | <b>√</b> |
| 7.13          | 6.5            | Avoid damage and disturbance to the remaining and surrounding natural habitat                                                                                                                                                               | All areas / Throughout construction period                             | Contractor                       | TMEIA                            |    | Y                  |      | <b>√</b> |
| 7.13          | 6.5            | Placement of equipment in designated areas within the existing disturbed land                                                                                                                                                               | All areas / Throughout construction period                             | Contractor                       | TMEIA                            |    | Y                  |      | <b>√</b> |
| 7.13          | 6.5            | Disturbed areas to be reinstated immediately after completion of the works.                                                                                                                                                                 | All areas / Throughout<br>construction period                          | Contractor                       | TMEIA                            |    | Y                  |      | <b>√</b> |
| 7.13          | 6.5            | Construction activities should be restricted to the proposed works boundary.                                                                                                                                                                | All areas / Throughout<br>construction period                          | Contractor                       | TMEIA                            |    | Y                  |      | <b>√</b> |
| LANDSCAPE A   | AND VISUAI     | L                                                                                                                                                                                                                                           |                                                                        |                                  |                                  |    |                    |      |          |
| 10.9          | 7.6            | The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2) | All areas/detailed design                                              | Design Consultant                | TMEIA                            | Y  |                    |      | N/A      |
| 10.9          | 7.6            | Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)                                                                                                                        | All areas/detailed design                                              | Design Consultant                | TMEIA                            | Y  |                    |      | N/A      |
| 10.9          | 7.6            | Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)                                                                                                                       | All areas/detailed design/<br>during construction/post<br>construction | Design Consultant/<br>Contractor | TMEIA                            | Y  | Y                  |      | <b>√</b> |
| 10.9          | 7.6            | Control night-time lighting and glare by hooding all lights (CM6)                                                                                                                                                                           | All areas/detailed design/<br>during construction                      | Design Consultant/<br>Contractor | TMEIA                            | Y  | Y                  |      | N/A      |
| 10.9          | 7.6            | Ensure no run-off into water body adjacent to the Project Area (CM7)                                                                                                                                                                        | All areas/detailed design/<br>during construction                      | Design Consultant/<br>Contractor | TMEIA                            | Y  | Y                  |      | <b>√</b> |
| 10.9          | 7.6            | Avoidance of excessive height and bulk of buildings and structures (CM8)                                                                                                                                                                    | All areas/detailed design/<br>during construction                      | Design Consultant/<br>Contractor | TMEIA                            | Y  | Y                  |      | <b>√</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | Manual    | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                | Location/ Timing                                                        | Implementation<br>Agent          | Relevant Standard or Requirement                                                                                                | or Requirement Stag |   |   |          |
|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|---|---|----------|
|               | Reference |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                  |                                                                                                                                 | D                   | C | O |          |
| 10.9          | 7.6       | Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)                                                                                                                                                                                                               | All areas/detailed design/<br>during construction / during<br>operation | Design Consultant/<br>Contractor | TMEIA                                                                                                                           | Y                   | Y | Y | N/A      |
| 10.9          | 7.6       | Avoidance of excessive height and bulk of buildings and structures (OM6)                                                                                                                                                                                                                                                                                                                                                                         | All areas/detailed design/<br>during construction / during<br>operation | Design Consultant/<br>Contractor | TMEIA                                                                                                                           | Y                   | Y | Y | N/A      |
| WASTE         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                  |                                                                                                                                 |                     |   |   |          |
| 12.6          |           | The Contractor shall identify a coordinator for the management of waste.                                                                                                                                                                                                                                                                                                                                                                         | Contract mobilisation                                                   | Contractor                       | TMEIA                                                                                                                           |                     | Y |   | <b>√</b> |
| 12.6          |           | The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established. |                                                                         | Contractor                       | TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material |                     | Y |   | <b>√</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual<br>Reference | Environmental Protection Measures                                                                                                                                                                            | Location/ Timing                           | Implementation<br>Agent | Relevant Standard<br>or Requirement                                                                                                                                   | - | olementa<br>Stages |   | Status * |
|---------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|---|----------|
|               | Reference                   |                                                                                                                                                                                                              |                                            |                         |                                                                                                                                                                       | D | C                  | O |          |
| 12.6          |                             | The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.                                                                  | Contract mobilisation                      | Contractor              | TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance. |   | Y                  |   | •        |
| 12.6          | 8.1                         | Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.                                     |                                            | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | ✓        |
| 12.6          | 8.1                         | The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.                                    |                                            | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | <b>√</b> |
| 12.6          | 8.1                         | The surplus surcharge should be transferred to a fill bank                                                                                                                                                   | Reclamation areas / after surcharge works  | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | N/A      |
| 12.6          | 8.1                         | Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible                                                                                                         | All areas / throughout construction period | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | <b>√</b> |
| 12.6          | 8.1                         | The site and surroundings shall be kept tidy and litter free.                                                                                                                                                | All areas / throughout construction period | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | ✓        |
| 12.6          | 8.1                         | No waste shall be burnt on site.                                                                                                                                                                             | All areas / throughout construction period | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | <b>√</b> |
| 12.6          | 8.1                         | Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.                                                                                           | Detailed Design                            | Design<br>Consultant    | TMEIA                                                                                                                                                                 | Y |                    |   | <b>√</b> |
| 12.6          | 8.1                         | The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation. | construction period                        | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | <b>√</b> |
| 12.6          | 8.1                         | Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.                                                                                 | All areas / throughout construction period | Contractor              | TMEIA                                                                                                                                                                 |   | Y                  |   | <b>√</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 0                                           |            | Relevant Standard or Requirement | Stages |   |   | Status * |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|----------------------------------|--------|---|---|----------|
|               | Reference      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |            |                                  | D      | C | O |          |
| 12.6          | 8.1            | Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.                                                                                                                                                                                                                                                                                                                                                                                                                 | All areas / throughout<br>construction period | Contractor | TMEIA                            |        | Y |   | <b>*</b> |
| 12.6          | 8.1            | Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.                                                                                                                                                                                                                                                                                                                                                                                                                   | All areas / throughout<br>construction period | Contractor | TMEIA                            |        | Y |   | <b>✓</b> |
| 12.6          | 8.1            | Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.                                                                                                                                                                                                                                                                                                                                                                                                 | . 0                                           | Contractor | TMEIA                            |        | Y |   | <b>✓</b> |
| 12.6          | 8.1            | Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling Purchasing of construction materials should avoid over-ordering and wastage.                                                                                                                              | f construction period<br>d<br>d               | Contractor | TMEIA                            |        | Y |   | *        |
| 12.6          | 8.1            | The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities. | e construction period<br>o<br>d               | Contractor | TMEIA                            |        | Y |   | *        |
| 12.6          | 8.1            | All falsework will be steel instead of wood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All areas / throughout construction period    | Contractor | TMEIA                            |        | Y |   | <b>✓</b> |
| 12.6          | 8.1            | Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows:  f suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed;                                                                                                                                                                                                            | construction period                           | Contractor | TMEIA                            |        | Y |   | <b>♦</b> |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun - Chek Lap Kok Link

# Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location/ Timing                              | Implementation<br>Agent | Relevant Standard or Requirement | Imp | Implementation<br>Stages |   | Status * |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|----------------------------------|-----|--------------------------|---|----------|
|               | Reference      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                         |                                  | D   | C                        | O |          |
|               |                | f Having a capacity of <450L unless the specifications have been approved by the EPD; and f Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations.  f Clearly labelled and used solely for the storage of chemical wastes; f Enclosed with at least 3 sides; f Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; f Adequate ventilation; f Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and f Incompatible materials are adequately separated. |                                               |                         |                                  |     |                          |   |          |
| 12.6          | 8.1            | Waste oils, chemicals or solvents shall not be disposed of to drain,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All areas / throughout<br>construction period | Contractor              | TMEIA                            |     | Y                        |   | <b>√</b> |
| 12.6          | 8.1            | Adequate numbers of portable toilets should be provided for onsite workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | Contractor              | TMEIA                            |     | Y                        |   |          |
| 12.6          | 8.1            | Night soil should be regularly collected by licensed collectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All areas / throughout<br>construction period | Contractor              | TMEIA                            |     | Y                        |   | N/A      |

Legend: D=Design, C=Construction, O=Operation

#### Tuen Mun – Chek Lap Kok Link

#### Northern Connection Sub-sea Tunnel Section

#### Environmental Mitigation and Enhancement Measure Implementation Schedule

| EIA Reference | EM&A<br>Manual | Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location/ Timing                           | Implementation<br>Agent | Relevant Standard or Requirement | Imp | olementa<br>Stages | tion | Status * |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|----------------------------------|-----|--------------------|------|----------|
|               | Reference      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                         |                                  | D   | С                  | О    |          |
| 12.6          | 8.1            | General refuse arising on-site should be stored in enclosed bins of compaction units separately from C&D and chemical wastes Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited. | construction period                        | Contractor              | TMEIA                            |     | Y                  |      | <>       |
| 12.6          | 8.1            | All waste containers shall be in a secure area on hardstanding;                                                                                                                                                                                                                                                                                                                                                                                                    | All areas / throughout construction period | Contractor              | TMEIA                            |     | Y                  |      | <b>√</b> |
| 12.6          | 8.1            | Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.                                                                                                                                                                                                                                                                                           | _                                          | Contractor              | TMEIA                            |     | Y                  |      | <b>√</b> |
| 12.6          | 8.1            | Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc. should be provided on-site.                                                                                                                                                          | construction period                        | Contractor              | TMEIA                            |     | Y                  |      | <b>✓</b> |
| 12.6          | Section 8      | EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.                                                                                                                                                                                                                                                                                                                       |                                            | Contractor              | EM&A Manual                      |     | Y                  |      | <b>√</b> |
| CULTURAL HI   | ERITAGE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                         |                                  |     |                    |      |          |
| 11.8          | Section 9      | EM&A in the form of audit of the mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                               | All areas / throughout construction period | Highways<br>Department  | EIAO-TM                          |     | Y                  |      | N/A      |

#### \* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

▲ Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

# Appendix D

# Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

| Parameters                             | Action      | Limit |
|----------------------------------------|-------------|-------|
| 24 Hour TSP Level in μg/m <sup>3</sup> | ASR1 = 213  | 260   |
|                                        | ASR5 = 238  |       |
|                                        | AQMS1 = 213 |       |
|                                        | ASR6 = 238  |       |
|                                        | ASR10 = 214 |       |
| 1 Hour TSP Level in μg /m³             | ASR1 = 331  | 500   |
|                                        | ASR5 = 340  |       |
|                                        | AQMS1 = 335 |       |
|                                        | ASR6 = 338  |       |
|                                        | ASR10 = 337 |       |

Table D2 Action and Limit Levels for Water Quality

| Parameter                                 | Action Level#                                                                                         | Limit Level#                                                                                                                                          |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| DO in mg/L (a)                            | Surface and Middle                                                                                    | Surface and Middle                                                                                                                                    |
|                                           | 5.0 mg/L                                                                                              | 4.2 mg/L                                                                                                                                              |
|                                           | Bottom                                                                                                | Bottom                                                                                                                                                |
|                                           | 4.7 mg/L                                                                                              | 3.6 mg/L                                                                                                                                              |
| Turbidity in NTU (Depthaveraged (b), (c)) | 120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., | 130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,                                                 |
|                                           | 27.5 NTU                                                                                              | 47.0 NTU                                                                                                                                              |
| SS in mg/L (Depth-averaged (b), (c))      | 120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., | 130% of upstream control<br>station at the same tide of the<br>same day and 10mg/L for<br>WSD Seawater Intakes at Tuen<br>Mun and 99%-ile of baseline |
|                                           | 23.5 mg/L                                                                                             | data, i.e.,                                                                                                                                           |
|                                           |                                                                                                       | 34.4 mg/L                                                                                                                                             |

#### Notes:

# Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

|                                            | North Lantau Social Cluster |                             |  |  |  |
|--------------------------------------------|-----------------------------|-----------------------------|--|--|--|
|                                            | NEL                         | NWL                         |  |  |  |
| Action Level                               | STG < 70% of baseline &     | STG < 70% of baseline &     |  |  |  |
|                                            | ANI < 70% of baseline       | ANI < 70% of baseline       |  |  |  |
| Limit Level                                | [STG < 40% of baseling      | ne & ANI < 40% of baseline] |  |  |  |
|                                            |                             | and                         |  |  |  |
| STG < 40% of baseline & ANI < 40% of basel |                             |                             |  |  |  |

#### Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

#### Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

|              | North Lantau                   | North Lantau Social Cluster |  |  |  |  |  |
|--------------|--------------------------------|-----------------------------|--|--|--|--|--|
|              | NEL                            | NWL                         |  |  |  |  |  |
| Action Level | STG < 4.2 & ANI< 15.5          | STG < 6.9 & ANI < 31.3      |  |  |  |  |  |
| Limit Level  | NEL = [STG <                   | < 2.4 & ANI <8.9]           |  |  |  |  |  |
|              | á á                            | and                         |  |  |  |  |  |
|              | NWL = [STG < 3.9 & ANI < 17.9] |                             |  |  |  |  |  |

# Appendix E

Copies of Calibration Certificates for Air Quality and Water Quality Monitoring

#### <u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.07593

 Intercept (b)
 :
 -0.00102

 Correlation Coefficient(r)
 :
 0.99996

**Standard Condition** 

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

| Resistance Plate |          | dH [green liquid] | Z     | X=Qstd            | IC      | Y           |
|------------------|----------|-------------------|-------|-------------------|---------|-------------|
|                  |          | (inch water)      |       | (cubic meter/min) | (chart) | (corrected) |
| 1                | 18 holes | 11.8              | 3.475 | 1.674             | 54      | 54.62       |
| 2                | 13 holes | 9.4               | 3.101 | 1.494             | 47      | 47.54       |
| 3                | 10 holes | 7.0               | 2.676 | 1.290             | 40      | 40.46       |
| 4                | 7 holes  | 4.8               | 2.216 | 1.068             | 32      | 32.37       |
| 5                | 5 holes  | 2.9               | 1.722 | 0.830             | 24      | 24.28       |

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$ 

#### Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>35.842</u> Intercept(b): <u>-5.713</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/2014

#### <u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR10
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

**Standard Condition** 

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

| Resistance Plate |          | dH [green liquid] | Z     | X=Qstd            | IC      | Y           |
|------------------|----------|-------------------|-------|-------------------|---------|-------------|
|                  |          | (inch water)      |       | (cubic meter/min) | (chart) | (corrected) |
| 1                | 18 holes | 12.6              | 3.590 | 1.730             | 62      | 62.71       |
| 2                | 13 holes | 9.2               | 3.068 | 1.478             | 52      | 52.60       |
| 3                | 10 holes | 7.0               | 2.676 | 1.290             | 45      | 45.52       |
| 4                | 7 holes  | 4.6               | 2.169 | 1.047             | 36      | 36.41       |
| 5                | 5 holes  | 2.8               | 1.693 | 0.816             | 28      | 28.32       |

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$ 

#### Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>37.576</u> Intercept(b): <u>-2.680</u> Correlation Coefficient(r): <u>0.9997</u>

Checked by: Magnum Fan Date: 17/12/14

#### <u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

**Standard Condition** 

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

| Resistance Plate |          | dH [green liquid] | Z     | X=Qstd            | IC      | Y           |
|------------------|----------|-------------------|-------|-------------------|---------|-------------|
|                  |          | (inch water)      |       | (cubic meter/min) | (chart) | (corrected) |
| 1                | 18 holes | 13.0              | 3.647 | 1.757             | 56      | 56.64       |
| 2                | 13 holes | 10.2              | 3.230 | 1.557             | 50      | 50.57       |
| 3                | 10 holes | 7.8               | 2.825 | 1.361             | 45      | 45.52       |
| 4                | 7 holes  | 5.0               | 2.262 | 1.090             | 37      | 37.42       |
| 5                | 5 holes  | 3.0               | 1.752 | 0.844             | 31      | 31.36       |

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$ 

#### Sampler Calibration Relationship (Linear Regression)

Slope(m):27.785 Intercept(b): 7.574 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 17/12/2014

#### <u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2014

 Slope (m)
 : 2.07593

 Intercept (b)
 : -0.00102

 Correlation Coefficient(r)
 : 0.99996

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

| Resi | Resistance Plate dH [green liquid] |              | sistance Plate dH [green liqu |                   | Z       | X=Qstd      | IC | Y |
|------|------------------------------------|--------------|-------------------------------|-------------------|---------|-------------|----|---|
|      |                                    | (inch water) |                               | (cubic meter/min) | (chart) | (corrected) |    |   |
| 1    | 18 holes                           | 11.8         | 3.475                         | 1.674             | 52      | 52.60       |    |   |
| 2    | 13 holes                           | 9.6          | 3.134                         | 1.510             | 47      | 47.54       |    |   |
| 3    | 10 holes                           | 7.0          | 2.676                         | 1.290             | 38      | 38.44       |    |   |
| 4    | 7 holes                            | 4.6          | 2.169                         | 1.046             | 30      | 30.34       |    |   |
| 5    | 5 holes                            | 2.8          | 1.693                         | 0.816             | 22      | 22.25       |    |   |

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$ 

#### Sampler Calibration Relationship (Linear Regression)

Slope(m): 35.713 Intercept(b): -7.017 Correlation Coefficient(r): 0.9994

Checked by: Magnum Fan Date: 17/12/2014

# High-Volume TSP Sampler 5-Point Calibration Record

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 10/12/2014

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2014

 Slope (m)
 :
 2.05818

 Intercept (b)
 :
 0.01929

 Correlation Coefficient(r)
 :
 0.99991

**Standard Condition** 

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1019 Ta(K) : 293

| Resi | Resistance Plate dH [green liquid] |              | Z     | X=Qstd            | IC      | Y           |
|------|------------------------------------|--------------|-------|-------------------|---------|-------------|
|      |                                    | (inch water) |       | (cubic meter/min) | (chart) | (corrected) |
| 1    | 18 holes                           | 12.6         | 3.590 | 1.730             | 53      | 53.61       |
| 2    | 13 holes                           | 9.6          | 3.134 | 1.510             | 46      | 46.53       |
| 3    | 10 holes                           | 7.2          | 2.714 | 1.308             | 39      | 39.45       |
| 4    | 7 holes                            | 4.4          | 2.122 | 1.023             | 31      | 31.36       |
| 5    | 5 holes                            | 3.0          | 1.752 | 0.844             | 25      | 25.29       |

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC\*{SQRT(Pa/Pstd)(Tstd/Ta)}

#### Sampler Calibration Relationship (Linear Regression)

Slope(m):31.736 Intercept(b): -1.473 Correlation Coefficient(r): 0.9995

Checked by: Magnum Fan Date: 17/12/2014



# 輝創工程有限公司

#### Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No.: C146966

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-2877)

Date of Receipt / 收件日期: 12 November 2014

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號

AM-4201

Serial No./編號

AF.27513

Supplied By / 委託者

Envirotech Services Co.

Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road,

Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$ 

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 November 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

C F Leung Project Engineer

Certified By

核證

Date of Issue

18 November 2014

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab(a)suncreation.com

Website/網址: www.suncreation.com



## 輝創工程有限公司

#### Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No.:

C146966

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

4. Test procedure: MA130N.

5. Results:

Air Velocity

| Applied | UUT     |       | Measured Correction        |                 |  |
|---------|---------|-------|----------------------------|-----------------|--|
| Value   | Reading | Value | Measurement Unce           | ent Uncertainty |  |
| (m/s)   | (m/s)   | (m/s) | Expanded Uncertainty (m/s) | Coverage Factor |  |
| 2.0     | 1.7     | +0.3  | 0.2                        | 2.0             |  |
| 4.1     | 3.8     | +0.3  | 0.3                        | 2.0             |  |
| 6.1     | 5.8     | +0.3  | 0.3                        | 2.0             |  |
| 8.0     | 7.8     | +0.2  | 0.3                        | 2.0             |  |
| 10.0    | 9.9     | +0.1  | 0.4                        | 2.0             |  |

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

#### Note:

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門與安里 -號青山灣機樓四樓

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

## ENVIROTECH SERVICES CO.

## **Calibration Report of Wind Meter**

| Date of Calibration:    | 29 December 2014                            |                    |                   |        |
|-------------------------|---------------------------------------------|--------------------|-------------------|--------|
| Brand of Test Meter:    | Davis                                       |                    |                   |        |
| Model:                  | Weather Wizard III (s/n: WE90911A30)        | • ,                |                   |        |
| Location:               | ASR5                                        | •                  |                   |        |
| Procedures:             |                                             |                    |                   |        |
| 1. Wind Still Test:     | The wind speed sensor was hold by hand un   | ntil it keep still |                   |        |
| 2.Wind Speed Test:      | The wind meter was on-site calibrated again | ist the Anemomete  | er                |        |
| 3. Wind Direction Test: | The wind meter was on-site calibrated again | nst the marine com | pass at four dire | ctions |
| Results:                |                                             |                    |                   |        |

Wind Still Test

|   | Wind Speed (m/s) |  |
|---|------------------|--|
| á | 0.00             |  |

#### Wind Speed Test

| Davis (m/s) | Anemomete (m/s) |
|-------------|-----------------|
| 1.4         | 1.6             |
| 1.9         | 1.7             |
| 2.4         | 2.5             |

#### Wind Direction Test

|     | Davis (o) | Marine Compass (o) |     |  |
|-----|-----------|--------------------|-----|--|
|     | 271       |                    | 270 |  |
| , E | 0         | · £                | 0   |  |
|     | 91        | er de posta        | 90  |  |
|     | 179       | *                  | 180 |  |

Calibrated by:

Yeung Ping Fai

(Technical Officer)

Checked by:

Ho Kam Fat

(Senior Technical Officer)



### Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No.

ET/EW/008/006

Manufacturer

YSI

Model No.

Pro 2030

Serial No.

12A 100554

Date of Calibration

17/12/2014

Calibration Due Date

16/03/2015

#### Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/008

Ref. No. of Water Bath:

---

|        |                         |          | Ter  | nperature (°C) |      |
|--------|-------------------------|----------|------|----------------|------|
| Refere | nce Thermometer reading | Measured | 20.0 | Corrected      | 19.4 |
|        | DO Meter reading        | Measured | 19.4 | Difference     | 0.0  |

#### Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$ ) solution

| Reagent No. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> titrant     | CPE/012/4.5/001/9 | Reagent No. of 0.025N K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | CPE/012/4.4/001/32 |  |
|--------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|--------------------|--|
|                                                                          |                   | Trial 1                                                             | Trial 2            |  |
| Initial Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml)       |                   | 0.00                                                                | 10.15              |  |
| Final Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml)         |                   | 10.15                                                               | 20.35              |  |
| Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> used (ml)          |                   | 10.15                                                               | 10.20              |  |
| Normality of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> solution (N)  |                   | 0.02463                                                             | 0.02451            |  |
| Average Normality (N) of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> s | solution (N)      | 0.02457                                                             |                    |  |
| Acceptance criteria, Deviation                                           |                   | Less than ± 0.001N                                                  |                    |  |

Calculation:

Normality of  $Na_2S_2O_3$ ,  $N = 0.25 / ml Na_2S_2O_3$  used

#### Lineality Checking

#### Determination of dissolved oxygen content by Winkler Titration \*

| Purging Time (min)                                                 |           | 2           |           | 5         | 1         | 0         |
|--------------------------------------------------------------------|-----------|-------------|-----------|-----------|-----------|-----------|
| Trial                                                              | 1         | 2           | 1         | 2         | 1         | 2         |
| Initial Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml) | 0.00      | 11.40       | 22.80     | 0.00      | 6.60      | 10.30     |
| Final Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml)   | 11.40     | 22.80       | 29.30     | 6.60      | 10.30     | 14.00     |
| Vol. (V) of $Na_2S_2O_3$ used (ml)                                 | 11.40     | 11.40       | 6.50      | 6.60      | 3.70      | 3.70      |
| Dissolved Oxygen (DO), mg/L                                        | 7.52      | 7.52        | 4.29      | 4.35      | 2.44      | 2.44      |
| Acceptance criteria, Deviation                                     | Less than | n + 0.3mg/L | Less than | + 0.3mg/L | Less than | + 0.3mg/L |

Calculation:

DO  $(mg/L) = V \times N \times 8000/298$ 

| Purging time, min  | DO meter reading, mg/L        |      | Winkler | · Titration res | Difference (%) of DO |         |         |
|--------------------|-------------------------------|------|---------|-----------------|----------------------|---------|---------|
| ruiging time, timi | 1                             | 2    | Average | 1               | 2                    | Average | Content |
| 2                  | 7.61                          | 7.20 | 7.41    | 7.52            | 7.52                 | 7.52    | 1.47    |
| 5                  | 4.28                          | 4.75 | 4.52    | 4.29            | 4.35                 | 4.32    | 4.52    |
| 10                 | 2.50                          | 2.49 | 2.50    | 2.44            | 2.44                 | 2.44    | 2.43    |
| Linea              | Linear regression coefficient |      |         |                 |                      | 0.9978  |         |



## **Internal Calibration Report of Dissolved Oxygen Meter**

| Zero Point | Checking |
|------------|----------|
|------------|----------|

| DO meter reading, mg/L | 0.00 |
|------------------------|------|

#### Salinity Checking

| 1                            | l .                      | i e                          |                     |
|------------------------------|--------------------------|------------------------------|---------------------|
| lm                           | CDT 10 10 11 #10 00 10 0 | D                            | CDD 101014 01000100 |
| [Reagent No. of NaCl (10ppt) | CPE/012/4.7/002/29       | Reagent No. of NaCl (30ppt)  | ICPE/012/4.8/002/29 |
| (10ppt)                      | C1 L101214.11002127      | incagent No. of Naci (Soppi) | C1 L/012/1.0/002/2/ |
| <u> </u>                     |                          |                              |                     |

#### Determination of dissolved oxygen content by Winkler Titration \*\*

| Salinity (ppt)                                                      | 10          | )         |          | 30          |
|---------------------------------------------------------------------|-------------|-----------|----------|-------------|
| Trial                                                               | 1           | 2         | 1        | 2           |
| Initial Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml)  | 0.00        | 11.90     | 23.80    | 34.40       |
| Final Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (ml)    | 11.90       | 23.80     | 34.40    | 44.90       |
| Vol. (V) of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> used (ml) | 11,90       | 11.90     | 10.60    | 10.50       |
| Dissolved Oxygen (DO), mg/L                                         | 7.85        | 7.85      | 6.99     | 6.93        |
| Acceptance criteria, Deviation                                      | Less than - | + 0.3mg/L | Less tha | n + 0.3mg/L |

Calculation:

 $DO (mg/L) = V \times N \times 8000/298$ 

| Salinity (ppt) | DO   | meter reading, | mg/L    | Winkler | Titration resu | lt**, mg/L | Difference (%) of DO |
|----------------|------|----------------|---------|---------|----------------|------------|----------------------|
| Samily (ppt)   | 1    | 2              | Average | 1       | 2              | Average    | Content              |
| 10             | 7.68 | 7.78           | 7.73    | 7.85    | 7.85           | 7.85       | 1.54                 |
| 30             | 6.88 | 6.89           | 6.89    | 6.99    | 6.93           | 6.96       | 1.01                 |

#### Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer :  $< 0.5 \, ^{\circ}\text{C}$
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within  $\pm$  5%

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

| Calibrated by | : | Approved by: | J. J |
|---------------|---|--------------|------------------------------------------|
|               |   |              |                                          |

CEP/012/W



| Performa                                                                                                                                                                                 | Performance Check of Salinity Meter |                                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|--|--|--|--|--|
| Equipment Ref. No. : ET/EW/008/006 Manufacturer : YSI                                                                                                                                    |                                     |                                |  |  |  |  |  |
| Model No. : <u>Pro 20</u>                                                                                                                                                                | 30                                  | Serial No. : <u>12A 100554</u> |  |  |  |  |  |
| Date of Calibration : 17/12/2                                                                                                                                                            | 2014                                | Due Date : <u>16/03/2015</u>   |  |  |  |  |  |
| Ref. No. of Salinity Stand                                                                                                                                                               | dard used (30ppt)                   | S/001/5                        |  |  |  |  |  |
| Salinity Standard Measured Salinity Difference %                                                                                                                                         |                                     |                                |  |  |  |  |  |
| (ppt)<br>30.0                                                                                                                                                                            | (ppt)<br>30.5                       | 1.7                            |  |  |  |  |  |
| (*) Difference (%) = (Measured Salinity – Salinity Standard value) / Salinity Standard value x 100                                                                                       |                                     |                                |  |  |  |  |  |
| Acceptance Criteria                                                                                                                                                                      | Difference : -10 %                  | to 10 %                        |  |  |  |  |  |
| The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards. |                                     |                                |  |  |  |  |  |
| Checked by:                                                                                                                                                                              | Арр                                 | proved by :                    |  |  |  |  |  |



| Internal Calibration &                                                                                              | Performance Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of pH Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Ref. No. : ET/EW/007/005                                                                                  | Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : HANNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Model No. : HI 8314                                                                                                 | Serial No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 8246095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 406.000 April 1944 Apr |
|                                                                                                                     | Calibration Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of Calibration : 07/12/2014                                                                                    | Calibration Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 06/01/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liquid Junction Error                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Standard Solution Used : Phosphate                                                                          | Ref No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Primary Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 003/5.2/001/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Temperature of Solution 20.0                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆pH ½ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pH value of diluted buffer : 6.76                                                                                   | and the second s | pH (S) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Delta$ pH = pH(S) - pH of diluted buffer = 0.121                                                                  | (Observed Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Canada American de la composició de control de la control  |
| Liquid Junction Error ( $\Delta pH_i$ ) = $\Delta pH - \Delta pH_{1/2} = 0.04$                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anni de la constancia d |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shift on Stirring                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pH of buffer solution (with stirring), $pH_s$ =                                                                     | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_i =$                                                     | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Al-:-                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Noise                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noise, $\Delta pH_n$ = difference between max and min re                                                            | eading: 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mppapersumpassa kananassa kananassa kananassa kananassa kananassa kananassa kananassa kananassa kananassa kana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Experied Addition to the Addition of the Addit |
| Verification of ATC                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C. Disc No. of reference the records                                                                                | ET/0524/000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>o</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref. No. of reference thermometer used:                                                                             | ET/0521/008<br>eter (T <sub>R</sub> ): 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperature record from the reference thermome                                                                      | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperature record from the ATC (T <sub>ATC</sub> ):                                                                | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Temperature Difference,  T <sub>R</sub> - T <sub>ATC</sub>                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acceptance Criteria                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Performance Characteristic                                                                                          | Accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | able Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liquid Junction Error ∆pHj                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Shift on Stirring ∆pHs                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noise ΔpHn                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verifcation of ATC Temperature                                                                                      | e Difference <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.5°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The pH meter complies * / does not comply * unacceptable * for use. Measurements are traces * Delete as appropriate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nts and is deeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d acceptable * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calibrated by :                                                                                                     | Checked by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CPE/015/W

1



| Internal Calibration &                                                                                             | Performance Chec                        | k of pH Mete       | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Ref. No.: ET/EW/007/005                                                                                  | Manufacturer                            | : HANNA            | A second section secti |
| Model No. : HI 8314                                                                                                | Serial No.                              | : 8246095          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date of Calibration : 07/01/2015                                                                                   | Calibration Due Date                    | : 06/02/2015       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liquid Junction Error                                                                                              |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Primary Standard Solution Used : Phosphate                                                                         | e Ref No. o                             | of Primary Solutio | n: <u>003/5.2/001/20</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Temperature of Solution : 20.0                                                                                     |                                         | ∆pH ½              | = +0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pH value of diluted buffer : 6.79                                                                                  |                                         |                    | = 6.881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\triangle pH = pH(S) - pH$ of diluted buffer = 0.091                                                              | (Observed Deviat                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liquid Junction Error ( $\Delta pH_i$ ) = $\Delta pH - \Delta pH_2 = 0.0$                                          |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                    | *************************************** |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shift on Stirring                                                                                                  |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pH of buffer solution (with stirring), pH <sub>s</sub> =                                                           | 6.91                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shift on stirring, $\triangle pH_s = pH_s - pH(S) - \triangle pH_j =$                                              | 0.018                                   | <del></del>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                    |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                    | 2.00                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Noise, $\Delta pH_n$ = difference between max and min r                                                            | reading: 0.00                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verification of ATC                                                                                                |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref. No. of reference thermometer used:                                                                            | ET/0521/00                              | าล                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature record from the reference thermome                                                                     | *************************************** |                    | −°c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Temperature record from the ATC ( $T_{ATC}$ ):                                                                     | 19.9                                    |                    | _<br>°c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Temperature Difference, $ T_R - T_{ATC} $                                                                          | 0.0                                     | <del></del>        | _ <sub>°</sub> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Temperature Difference, TTR - TATCT                                                                                | 0.0                                     |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Acceptance Criteria                                                                                                |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Performance Characteristic                                                                                         | Accep                                   | otable Range       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liquid Junction Error ∆pHj                                                                                         |                                         | ≤0.05              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shift on Stirring ApHs                                                                                             |                                         | ≤0.02              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Noise ApHn                                                                                                         | D. C.                                   | ≤0.02              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verification of ATC Temperatur                                                                                     | re Difference                           | ≤0.5°C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The pH meter complies * / does not comply * unacceptable * for use. Measurements are trace * Delete as appropriate |                                         | ents and is deem   | ned acceptable * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                    |                                         |                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Calibrated by :                                                                                                    | Checked by                              | y:                 | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

CPE/015/W



|     | Performance Check of Turbidity Meter                                                                                                                                                      |                        |                             |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|--|--|--|--|
| Eq  | uipment Ref. No. : ET/0505/01                                                                                                                                                             | 0 Manufa               | cturer : <u>HACH</u>        |  |  |  |  |
| M   | odel No. : <u>2100Q</u>                                                                                                                                                                   | Serial N               | o. : <u>11110 C 014260</u>  |  |  |  |  |
| Da  | Date of Calibration : <u>06/10/2014</u> Due Date : <u>05/01/2015</u>                                                                                                                      |                        |                             |  |  |  |  |
|     | Ref. No. of Turbidity Standard us                                                                                                                                                         | sed (4000NTU)          | 005/6.1/001/7               |  |  |  |  |
|     | Theoretical Value of Turbidity Standard (NTU)                                                                                                                                             | Measured Value (N      | TTU) Difference % *         |  |  |  |  |
|     | 20                                                                                                                                                                                        | 20.6                   | 3.00                        |  |  |  |  |
|     | 100                                                                                                                                                                                       | 102                    | 2.00                        |  |  |  |  |
|     | 800                                                                                                                                                                                       | 790                    | -1.25                       |  |  |  |  |
|     | (*) Difference = (Measured Valu                                                                                                                                                           | ue – Theoretical Value | ) / Theoretical Value x 100 |  |  |  |  |
| Ac  | Acceptance Criteria Difference: -5 % to 5 %                                                                                                                                               |                        |                             |  |  |  |  |
|     | The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards. |                        |                             |  |  |  |  |
| Pre | epared by :                                                                                                                                                                               | Checked by             | : 1 de 6                    |  |  |  |  |



# Performance Check of Turbidity Meter

Equipment Ref. No. : ET/0505/011 Manufacturer : HACH

Model No. : 2100Q Serial No. : 12060 C 018534

Date of Calibration : <u>05/01/2015</u> Due Date : <u>04/04/2015</u>

Ref. No. of Turbidity Standard used (4000NTU) 005/6.1/001/7

| Theoretical Value of Turbidity Standard (NTU) | Measured Value (NTU) | Difference % * |
|-----------------------------------------------|----------------------|----------------|
| 20                                            | 19.8                 | -1.00          |
| 100                                           | 104                  | 4.00           |
| 800                                           | 788                  | -1.50          |

(\*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

| <b>.</b>   | $\sim$ . | •   |
|------------|----------|-----|
| Accentance | ( 'rita  | MIO |
| Acceptance |          | нa  |
|            |          |     |

Difference: -5 % to 5 %

The turbidity meter complies \* / does not comply \* with the specified requirements and is deemed acceptable \* / unacceptable \* for use. Measurements are traceable to national standards.

Prepared by: Checked by:

# Appendix F

# EM&A Monitoring Schedules

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - January 2015

| Quantum . | Manufact | Turnelou                     | Wadaaadaa | Thomas                       | Friday | Octoredore |
|-----------|----------|------------------------------|-----------|------------------------------|--------|------------|
| Sunday    | Monday   | Tuesday                      | Wednesday | Thursday                     | Friday | Saturday   |
|           |          |                              |           | 1-Jan                        |        |            |
| 4         | -Jan 5-  | an 6-Jar                     | 7-Jan     |                              | 9-Jan  | 10-Jan     |
|           |          |                              |           | Impact Dolphin<br>Monitoring |        |            |
| 11        | -Jan 12- | an 13-Jar                    | 14-Jan    |                              | 16-Jan | 17-Jan     |
|           |          |                              |           | Impact Dolphin<br>Monitoring |        |            |
| 18        | -Jan 19- | an 20-Jar                    | 21-Jan    | 22-Jan                       | 23-Jan | 24-Jan     |
|           |          |                              |           |                              |        |            |
| 25        | -Jan 26- |                              | 28-Jan    |                              | 30-Jan | 31-Jan     |
|           |          | Impact Dolphin<br>Monitoring |           | Impact Dolphin<br>Monitoring |        |            |

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - February 2015

|   | Sunday | Monday                       | Tuesday | Wednesday                    | Thursday                     | Friday                | Saturday              |
|---|--------|------------------------------|---------|------------------------------|------------------------------|-----------------------|-----------------------|
|   | 01-Feb | 02-Feb                       | 03-Feb  | 04-Feb                       | 05-Feb                       | 06-Feb                | 07-Feb                |
|   |        |                              |         |                              | Impact Dolphin<br>Monitoring |                       |                       |
|   | 08-Feb | 09-Feb                       | 10-Feb  | 11-Feb                       | 12-Feb                       | 13-Feb                | 14-Feb                |
|   |        |                              |         |                              | Impact Dolphin<br>Monitoring |                       |                       |
| Ī | 15-Feb | 16-Feb                       | 17-Feb  | 18-Feb                       | public holiday 19-Feb        | public holiday 20-Feb | public holiday 21-Feb |
|   |        | Impact Dolphin<br>Monitoring |         |                              |                              |                       |                       |
| Ī | 22-Feb | 23-Feb                       | 24-Feb  | 25-Feb                       | 26-Feb                       | 27-Feb                | 28-Feb                |
|   |        |                              |         | Impact Dolphin<br>Monitoring |                              |                       |                       |

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

### HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - January 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

| Air quality monitoring station | ons: ASR1, ASR5, ASR6, A | SR10, AQMS1          |                      |                      |                      |                      |
|--------------------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
| Sunday                         | Monday                   | Tuesday              | Wednesday            | Thursday             | Friday               | Saturday             |
|                                | -                        |                      | -                    | public holiday 1-Jan | 2-Jan                | 3-Jan                |
|                                |                          |                      |                      | 1-hour TSP - 3 times |                      |                      |
|                                |                          |                      |                      | 24-hour TSP - 1 time |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      | Impact AQM           |                      |                      |
| 4-Jan                          | 5-Jan                    |                      | 7-Jan                | 8-Jan                | 9-Jan                | 10-Jan               |
| 1-hour TSP - 3 times           |                          |                      | 1-hour TSP - 3 times |                      |                      | 1-hour TSP - 3 times |
| 24-hour TSP - 1 time           |                          |                      | 24-hour TSP - 1 time |                      |                      | 24-hour TSP - 1 time |
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
| Impact AQM                     |                          |                      | Impact AQM           |                      |                      | Impact AQM           |
| 11-Jan                         | 12-Jan                   |                      | 14-Jan               | 15-Jan               | 16-Jan               | 17-Jan               |
|                                |                          | 1-hour TSP - 3 times |                      |                      | 1-hour TSP - 3 times |                      |
|                                |                          | 24-hour TSP - 1 time |                      |                      | 24-hour TSP - 1 time |                      |
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
|                                |                          | Impact AQM           |                      |                      | Impact AQM           |                      |
| 18-Jan                         |                          | 20-Jan               |                      | 22-Jan               | 23-Jan               | 24-Jan               |
|                                | 1-hour TSP - 3 times     |                      |                      | 1-hour TSP - 3 times |                      |                      |
|                                | 24-hour TSP - 1 time     |                      |                      | 24-hour TSP - 1 time |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
|                                | January and ACM          |                      |                      | Immont AOM           |                      |                      |
| 25-Jan                         | Impact AQM 26-Jan        | 27-Jan               |                      | Impact AQM 29-Jan    | 30-Jan               | 31-Jan               |
| 1-hour TSP - 3 times           | 20-Jan                   |                      | 1-hour TSP - 3 times | 29-Jan               | 30-Jan               | 1-hour TSP - 3 times |
| 24-hour TSP - 1 time           |                          |                      | 24-hour TSP - 1 time |                      |                      | 24-hour TSP - 1 time |
| 24-110ui 13i - 1 tiille        |                          |                      |                      |                      |                      |                      |
|                                |                          |                      |                      |                      |                      |                      |
| Impact AQM                     |                          |                      | Impact AQM           |                      |                      | Impact AQM           |
| IIIIpaci AQIVI                 |                          |                      | πηρασι Αφινί         |                      |                      | IIIIPadi AQIVI       |

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

### HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - February 2015

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

| Jan      | ons. Aorti, Aorto, Aorto, A                  |                                              |           |                                              |                                              |                       |
|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------|----------------------------------------------|----------------------------------------------|-----------------------|
| Sunday                                       | Monday                                       | Tuesday                                      | Wednesday | Thursday                                     | Friday                                       | Saturday              |
| 01-Feb                                       | 02-Feb                                       | 03-Feb                                       | 04-Feb    | 05-Feb                                       | 06-Feb                                       | 07-Feb                |
|                                              |                                              | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |           |                                              | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                       |
|                                              |                                              | Impact AQM                                   |           |                                              | Impact AQM                                   |                       |
| 08-Fel                                       |                                              | 10-Feb                                       | 11-Feb    |                                              | 13-Feb                                       | 14-Feb                |
|                                              | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                                              |           | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                                              |                       |
|                                              | Impact AQM                                   |                                              |           | Impact AQM                                   |                                              |                       |
| 15-Fel                                       | 16-Feb                                       |                                              | 18-Feb    | public holiday 19-Feb                        | public holiday 20-Feb                        | public holiday 21-Feb |
| 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                                              | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |           |                                              |                                              |                       |
| Impact AQM                                   |                                              | Impact AQM                                   |           |                                              |                                              |                       |
| 22-Feb                                       |                                              | 24-Feb                                       | 25-Feb    |                                              | 27-Feb                                       | 28-Feb                |
|                                              | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                                              |           | 1-hour TSP - 3 times<br>24-hour TSP - 1 time |                                              |                       |
|                                              | Impact AQM                                   |                                              |           | Impact AQM                                   |                                              |                       |

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. No construction works will be carried out from 19-Feb to 21-Feb hence AQM will postpone to 23-Feb.

# HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (January 15)

| Sunday | Monday          | Tuesday | Wednesday       | Thursday | Friday          | Saturday |
|--------|-----------------|---------|-----------------|----------|-----------------|----------|
|        |                 |         |                 | 01-Jan   | 02-Jan          | 03-Jan   |
|        |                 |         |                 |          | WQM             |          |
|        |                 |         |                 |          | Mid-Ebb         |          |
|        |                 |         |                 |          | 11:02           |          |
|        |                 |         |                 |          | (09:17 - 12:47) |          |
|        |                 |         |                 |          | Mid-Flood       |          |
|        |                 |         |                 |          | 16:29           |          |
|        |                 |         |                 |          | (14:44 - 18:14) |          |
| 04-Ja  |                 | 06-Jan  |                 | 08-Jan   | 09-Jan          | 10-Jan   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Ebb         |         | Mid-Flood       |          | Mid-Flood       |          |
|        | 13:09           |         | 9:04            |          | 9:59            |          |
|        | (11:24 - 14:54) |         | (07:19 - 10:49) |          | (08:14 - 11:44) |          |
|        | Mid-Flood       |         | Mid-Ebb         |          | Mid-Ebb         |          |
|        | 18:25           |         | 14:18           |          | 15:21           |          |
|        | (16:40 - 20:10) |         | (12:33 - 16:03) |          | (13:36 - 17:06) |          |
| 11-Ja  | an 12-Jan       |         | 14-Jan          | 15-Jan   | 16-Jan          | 17-Jan   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Ebb         |          |
|        | 11:36           |         | 13:04           |          | 9:19            |          |
|        | (09:51 - 13:21) |         | (11:19 - 14:49) |          | (07:34 - 11:04) |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Flood       |          |
|        | 17:35           |         | 20:05           |          | 14:49           |          |
|        | (15:50 - 19:20) |         | (18:20 - 21:50) |          | (13:04 - 16:34) |          |
| 18-Ja  |                 | 20-Jan  |                 | 22-Jan   |                 | 24-Jan   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Flood       |          |
|        | 12:13           |         | 13:42           |          | 9:33            |          |
|        | (10:28 - 13:58) |         | (11:57 - 15:27) |          | (07:48 - 11:18) |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Ebb         |          |
|        | 17:26           |         | 19:04           |          | 15:11           |          |
|        | (16:13 - 19:43) |         | (17:19 - 20:49) |          | (13:26 - 16:56) |          |
| 25-Ja  | an 26-Jan       | 27-Jan  |                 | 29-Jan   |                 | 31-Jan   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Ebb         |          |
|        | 11:34           |         | 13:09           |          | 9:47            |          |
|        | (09:49 - 13:19) |         | (11:24 - 14:54) |          | (08:20 - 11:15) |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Flood       |          |
|        | 17:58           |         | 20:31           |          | 15:04           |          |
|        | (16:13 - 19:43) |         | (18:46 - 22:16) |          | (13:19 - 16:49) |          |

# HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Tentative Impact Marine Water Quality Monitoring (WQM) Schedule (February 15)

| Sunday | Monday          | Tuesday | Wednesday       | Thursday | Friday          | Saturday |
|--------|-----------------|---------|-----------------|----------|-----------------|----------|
| 01-Feb |                 | 03-Feb  | 04-Feb          | 05-Feb   |                 | 07-Feb   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Flood       |          |
|        | 12:19           |         | 13:23           |          | 8:46            |          |
|        | (10:34 - 14:04) |         | (11:38 - 15:08) |          | (07:01 - 10:31) |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Ebb         |          |
|        | 17:39           |         | 18:54           |          | 14:18           |          |
|        | (15:54 - 19:24) |         | (17:09 - 20:39) |          | (12:33 - 16:03) |          |
| 08-Feb |                 | 10-Feb  | 11-Feb          | 12-Feb   |                 | 14-Feb   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Flood       |          |
|        | 10:01           |         | 11:06           |          | 12:43           |          |
|        | (08:16 - 11:46) |         | (09:21 - 12:51) |          | (10:58 - 14:28) |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Ebb         |          |
|        | 16:00           |         | 17:42           |          | 20:24           |          |
|        | (14:15 - 17:45) |         | (15:57 - 19:27) |          | (18:39 - 22:09) |          |
| 15-Feb |                 | 17-Feb  | 18-Feb          | 19-Feb   | 20-Feb          | 21-Feb   |
|        | WQM             |         | WQM             |          |                 |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          |                 |          |
|        | 11:12           |         | 12:42           |          |                 |          |
|        | (09:27 - 12:57) |         | (10:57 - 14:27) |          |                 |          |
|        | Mid-Flood       |         | Mid-Flood       |          |                 |          |
|        | 16:20           |         | 18:11           |          |                 |          |
|        | (14:35 - 18:05) |         | (16:26 - 19:56) |          |                 |          |
| 22-Feb |                 | 24-Feb  | 25-Feb          | 26-Feb   |                 | 28-Feb   |
|        | WQM             |         | WQM             |          | WQM             |          |
|        | Mid-Flood       |         | Mid-Flood       |          | Mid-Flood       |          |
|        | 9:56            |         | 11:13           |          | 7:46            |          |
|        | (08:11 - 11:41) |         | (09:28 - 12:58) |          | (06:45 - 08:45) |          |
|        | Mid-Ebb         |         | Mid-Ebb         |          | Mid-Ebb         |          |
|        | 16:16           |         | 18:18           |          | 13:00           |          |
|        | (14:31 - 18:01) |         | (16:33 - 20:03) |          | (11:15 - 14:45) |          |

# Appendix G

Impact Air Quality Monitoring Results

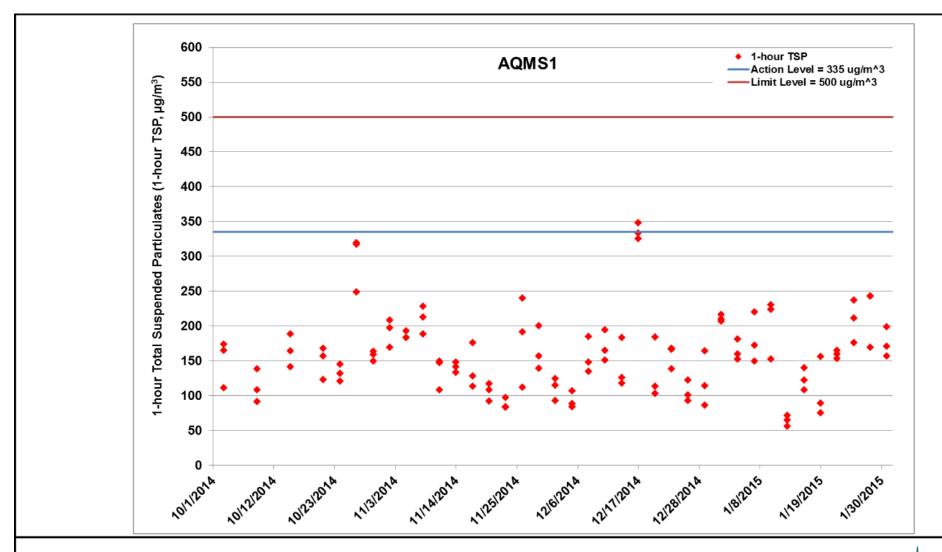



Figure G.1 Impact Monitoring – 1-hour Total Suspended Particulates (µg/m³) at AQMS1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330\_Impact AQM graphs\_Jan 2015\_REV a.xlsx



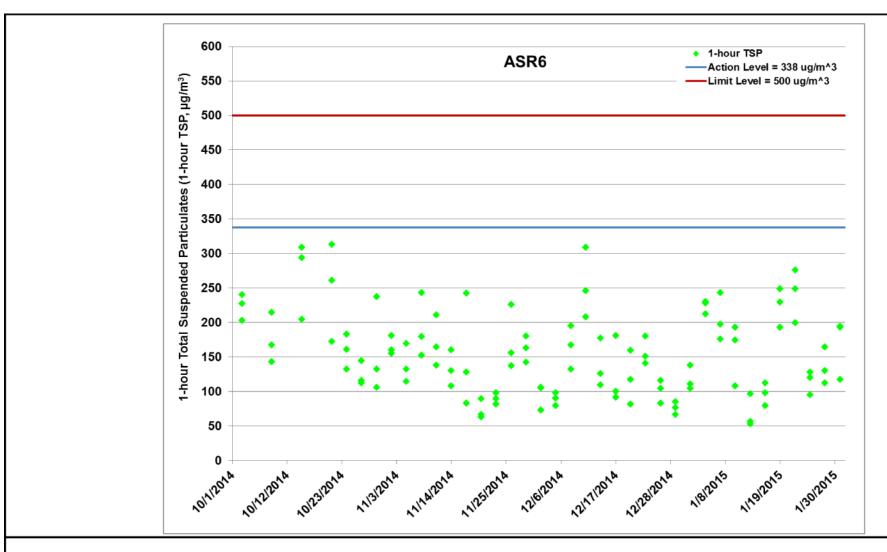



Figure G.2 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330\_Impact AQM graphs\_Jan 2015\_REV a.xlsx



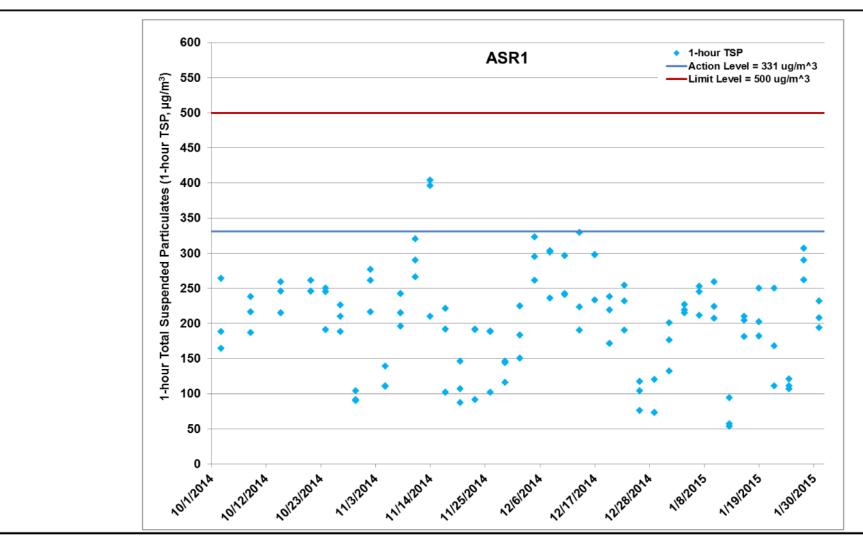



Figure G.3 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014). Ref: 0212330\_Impact AQM graphs\_Jan 2015\_REV a.xlsx



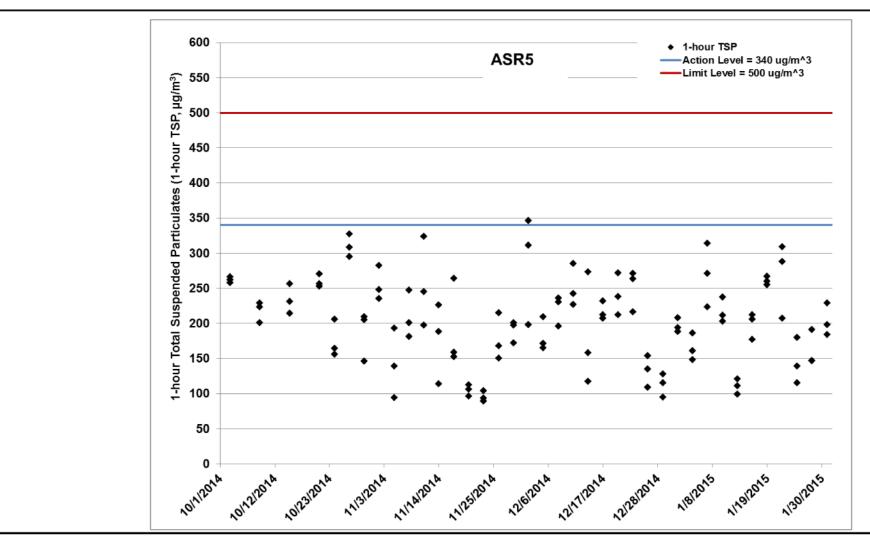



Figure G.4 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



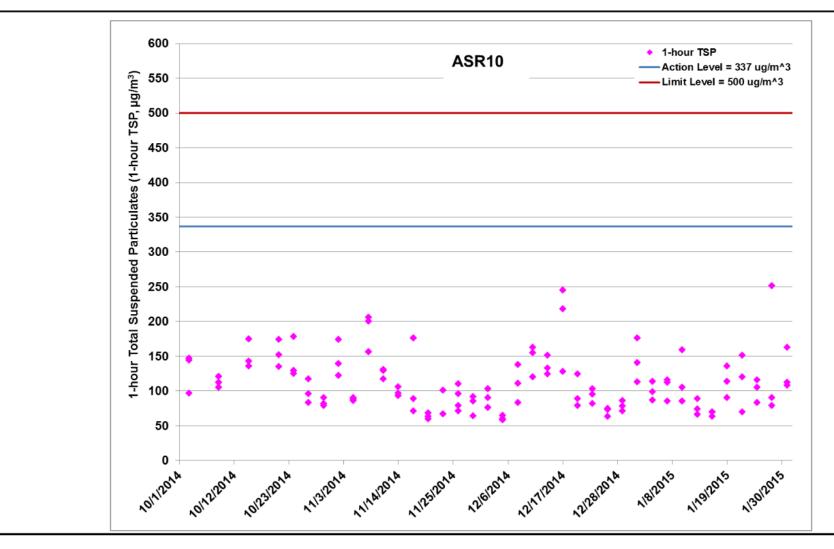



Figure G.5 Impact Monitoring – 1-hour Total Suspended Particulates ( $\mu$ g/m³) at ASR10 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area – Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area – Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



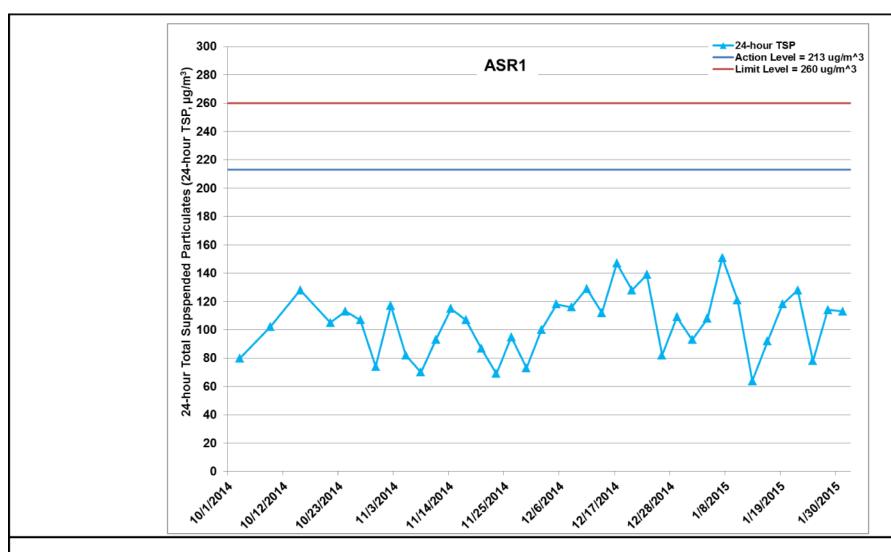



Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates ( $\mu$ g/m³) at ASR1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



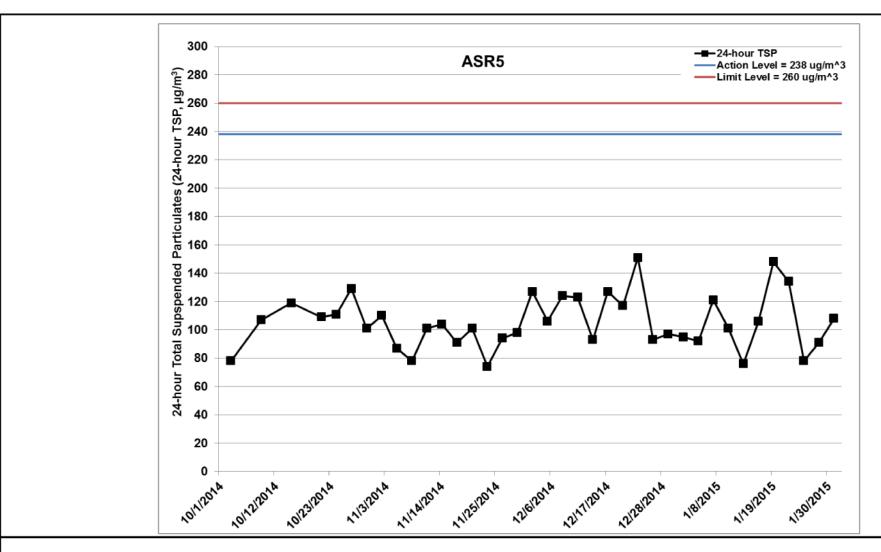



Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



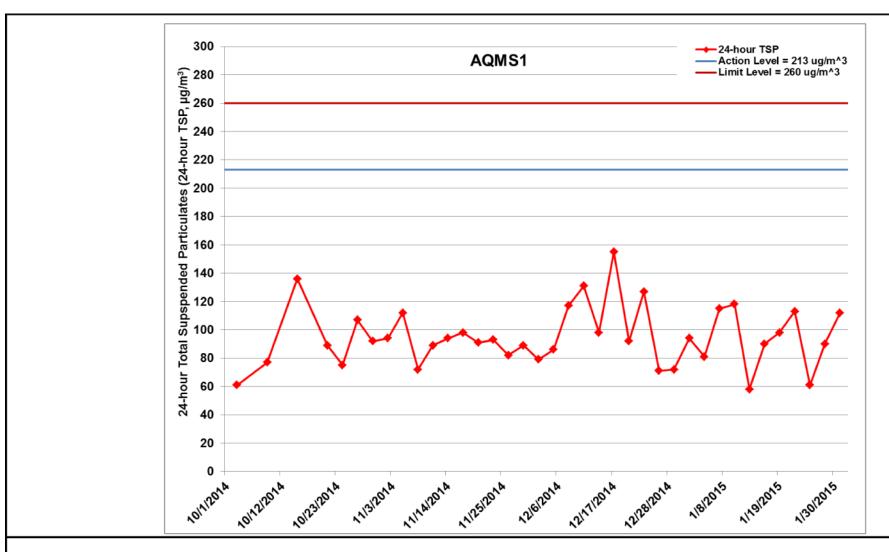



Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



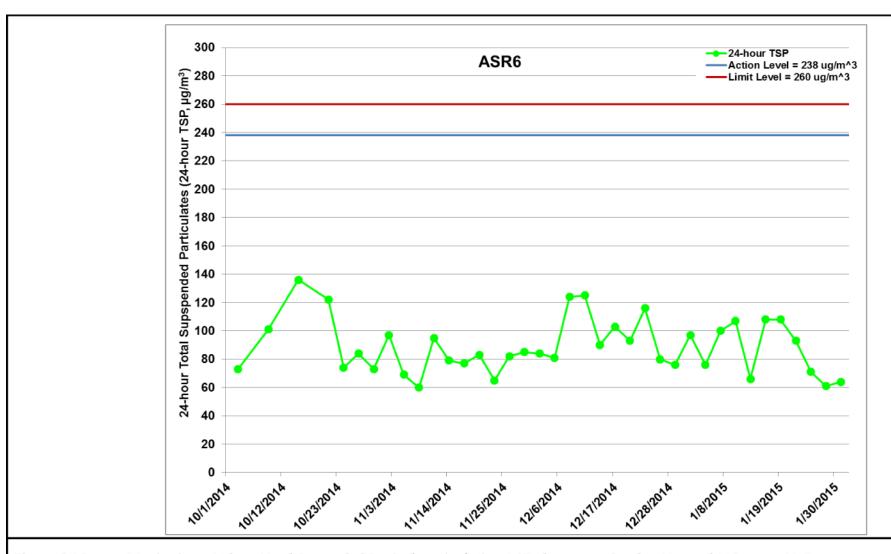



Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



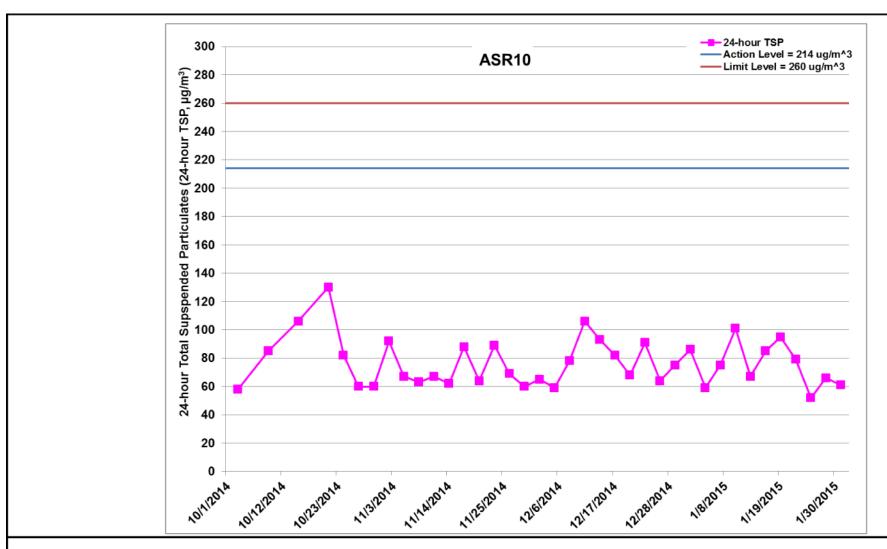



Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates ( $\mu$ g/m³) at ASR10 between 1 October 2014 and 31 January 2015 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: TBM Platform Construction at Works Area - Portion N-A (22/12/2014 – 31/1/2015), Diaphragm Wall Construction at Works Area - Portion N-A (1/10/2014 – 30/11/2014) and Excavation for Launching Shaft (24/10/2014 – 30/11/2014).



| Project | Works      | Date       | Station | Weather | Start time | Parameters | Results | units |
|---------|------------|------------|---------|---------|------------|------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR10   | Sunny   | 08:40      | 1-hour TSP | 113     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR10   | Sunny   | 09:42      | 1-hour TSP | 176     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR10   | Sunny   | 10:44      | 1-hour TSP | 141     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | AQMS1   | Sunny   | 09:25      | 1-hour TSP | 210     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | AQMS1   | Sunny   | 10:27      | 1-hour TSP | 207     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | AQMS1   | Sunny   | 11:29      | 1-hour TSP | 216     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR1    | Sunny   | 09:13      | 1-hour TSP | 132     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR1    | Sunny   | 10:15      | 1-hour TSP | 176     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR1    | Sunny   | 11:17      | 1-hour TSP | 201     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR5    | Sunny   | 09:02      | 1-hour TSP | 194     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR5    | Sunny   | 10:04      | 1-hour TSP | 188     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR5    | Sunny   | 11:06      | 1-hour TSP | 208     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR6    | Sunny   | 08:51      | 1-hour TSP | 111     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR6    | Sunny   | 09:53      | 1-hour TSP | 138     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR6    | Sunny   | 10:55      | 1-hour TSP | 104     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | AQMS1   | Sunny   | 08:46      | 1-hour TSP | 152     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | AQMS1   | Sunny   | 09:48      | 1-hour TSP | 181     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | AQMS1   | Sunny   | 10:50      | 1-hour TSP | 160     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR10   | Sunny   | 08:00      | 1-hour TSP | 87      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR10   | Sunny   | 09:02      | 1-hour TSP | 114     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR10   | Sunny   | 10:04      | 1-hour TSP | 99      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR6    | Sunny   | 08:12      | 1-hour TSP | 212     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR6    | Sunny   | 09:14      | 1-hour TSP | 230     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR6    | Sunny   | 10:16      | 1-hour TSP | 228     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR1    | Sunny   | 08:35      | 1-hour TSP | 219     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR1    | Sunny   | 09:37      | 1-hour TSP | 227     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR1    | Sunny   | 10:39      | 1-hour TSP | 215     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR5    | Sunny   | 08:23      | 1-hour TSP | 161     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR5    | Sunny   | 09:25      | 1-hour TSP | 186     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR5    | Sunny   | 10:27      | 1-hour TSP | 148     | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters | Results | units |
|---------|------------|------------|---------|---------|------------|------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR1    | Cloudy  | 13:20      | 1-hour TSP | 211     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR1    | Cloudy  | 14:22      | 1-hour TSP | 245     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR1    | Cloudy  | 15:24      | 1-hour TSP | 253     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR5    | Cloudy  | 13:08      | 1-hour TSP | 314     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR5    | Cloudy  | 14:10      | 1-hour TSP | 271     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR5    | Cloudy  | 15:12      | 1-hour TSP | 223     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR6    | Cloudy  | 12:56      | 1-hour TSP | 243     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR6    | Cloudy  | 13:58      | 1-hour TSP | 197     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR6    | Cloudy  | 15:00      | 1-hour TSP | 176     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR10   | Cloudy  | 12:45      | 1-hour TSP | 116     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR10   | Cloudy  | 13:47      | 1-hour TSP | 112     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR10   | Cloudy  | 14:49      | 1-hour TSP | 85      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | AQMS1   | Cloudy  | 13:32      | 1-hour TSP | 149     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | AQMS1   | Cloudy  | 14:34      | 1-hour TSP | 220     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | AQMS1   | Cloudy  | 15:36      | 1-hour TSP | 172     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR6    | Sunny   | 13:44      | 1-hour TSP | 193     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR6    | Sunny   | 14:46      | 1-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR6    | Sunny   | 15:48      | 1-hour TSP | 174     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR5    | Sunny   | 13:56      | 1-hour TSP | 237     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR5    | Sunny   | 14:58      | 1-hour TSP | 203     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR5    | Sunny   | 16:00      | 1-hour TSP | 211     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR1    | Sunny   | 14:08      | 1-hour TSP | 207     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR1    | Sunny   | 15:10      | 1-hour TSP | 259     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR1    | Sunny   | 16:12      | 1-hour TSP | 224     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | AQMS1   | Sunny   | 14:20      | 1-hour TSP | 152     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | AQMS1   | Sunny   | 15:22      | 1-hour TSP | 230     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | AQMS1   | Sunny   | 16:24      | 1-hour TSP | 224     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR10   | Sunny   | 13:33      | 1-hour TSP | 159     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR10   | Sunny   | 14:35      | 1-hour TSP | 85      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR10   | Sunny   | 15:37      | 1-hour TSP | 105     | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters | Results | units |
|---------|------------|------------|---------|---------|------------|------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR10   | Cloudy  | 13:16      | 1-hour TSP | 66      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR10   | Cloudy  | 14:18      | 1-hour TSP | 74      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR10   | Cloudy  | 15:20      | 1-hour TSP | 89      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | AQMS1   | Cloudy  | 14:02      | 1-hour TSP | 65      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | AQMS1   | Cloudy  | 15:04      | 1-hour TSP | 71      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | AQMS1   | Cloudy  | 16:06      | 1-hour TSP | 56      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR1    | Cloudy  | 13:50      | 1-hour TSP | 57      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR1    | Cloudy  | 14:52      | 1-hour TSP | 53      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR1    | Cloudy  | 15:54      | 1-hour TSP | 94      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR5    | Cloudy  | 13:39      | 1-hour TSP | 121     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR5    | Cloudy  | 14:41      | 1-hour TSP | 99      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR5    | Cloudy  | 15:43      | 1-hour TSP | 111     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR6    | Cloudy  | 13:28      | 1-hour TSP | 56      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR6    | Cloudy  | 14:30      | 1-hour TSP | 53      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR6    | Cloudy  | 15:32      | 1-hour TSP | 96      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR6    | Sunny   | 08:18      | 1-hour TSP | 112     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR6    | Sunny   | 09:20      | 1-hour TSP | 79      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR6    | Sunny   | 10:22      | 1-hour TSP | 98      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR5    | Sunny   | 08:30      | 1-hour TSP | 212     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR5    | Sunny   | 09:32      | 1-hour TSP | 177     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR5    | Sunny   | 10:34      | 1-hour TSP | 206     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR1    | Sunny   | 08:42      | 1-hour TSP | 210     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR1    | Sunny   | 09:44      | 1-hour TSP | 181     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR1    | Sunny   | 10:46      | 1-hour TSP | 204     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | AQMS1   | Sunny   | 08:54      | 1-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | AQMS1   | Sunny   | 09:56      | 1-hour TSP | 122     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | AQMS1   | Sunny   | 10:58      | 1-hour TSP | 140     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR10   | Sunny   | 08:07      | 1-hour TSP | 70      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR10   | Sunny   | 09:09      | 1-hour TSP | 63      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR10   | Sunny   | 10:11      | 1-hour TSP | 70      | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters | Results | units |
|---------|------------|------------|---------|---------|------------|------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-19 | AQMS1   | Sunny   | 12:57      | 1-hour TSP | 75      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | AQMS1   | Sunny   | 13:59      | 1-hour TSP | 156     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | AQMS1   | Sunny   | 15:01      | 1-hour TSP | 89      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR10   | Sunny   | 14:14      | 1-hour TSP | 136     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR10   | Sunny   | 13:12      | 1-hour TSP | 90      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR10   | Sunny   | 12:10      | 1-hour TSP | 114     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR6    | Sunny   | 12:22      | 1-hour TSP | 229     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR6    | Sunny   | 13:24      | 1-hour TSP | 193     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR6    | Sunny   | 14:26      | 1-hour TSP | 249     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR5    | Sunny   | 12:33      | 1-hour TSP | 255     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR5    | Sunny   | 13:35      | 1-hour TSP | 260     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR5    | Sunny   | 14:37      | 1-hour TSP | 267     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR1    | Sunny   | 12:45      | 1-hour TSP | 202     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR1    | Sunny   | 13:47      | 1-hour TSP | 182     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR1    | Sunny   | 14:49      | 1-hour TSP | 250     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | AQMS1   | Sunny   | 13:47      | 1-hour TSP | 153     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | AQMS1   | Sunny   | 14:49      | 1-hour TSP | 160     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | AQMS1   | Sunny   | 15:51      | 1-hour TSP | 165     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR10   | Sunny   | 13:02      | 1-hour TSP | 151     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR10   | Sunny   | 14:04      | 1-hour TSP | 120     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR10   | Sunny   | 15:06      | 1-hour TSP | 70      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR6    | Sunny   | 13:13      | 1-hour TSP | 276     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR6    | Sunny   | 14:15      | 1-hour TSP | 249     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR6    | Sunny   | 15:17      | 1-hour TSP | 199     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR5    | Sunny   | 13:23      | 1-hour TSP | 288     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR5    | Sunny   | 14:25      | 1-hour TSP | 309     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR5    | Sunny   | 15:27      | 1-hour TSP | 207     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR1    | Sunny   | 13:35      | 1-hour TSP | 250     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR1    | Sunny   | 14:37      | 1-hour TSP | 111     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR1    | Sunny   | 15:39      | 1-hour TSP | 168     | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters | Results | units |
|---------|------------|------------|---------|---------|------------|------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR1    | Sunny   | 08:42      | 1-hour TSP | 121     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR1    | Sunny   | 09:44      | 1-hour TSP | 111     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR1    | Sunny   | 10:46      | 1-hour TSP | 107     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR5    | Sunny   | 08:30      | 1-hour TSP | 180     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR5    | Sunny   | 09:32      | 1-hour TSP | 139     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR5    | Sunny   | 10:34      | 1-hour TSP | 115     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR6    | Sunny   | 08:18      | 1-hour TSP | 128     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR6    | Sunny   | 09:20      | 1-hour TSP | 120     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR6    | Sunny   | 10:22      | 1-hour TSP | 95      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR10   | Sunny   | 08:07      | 1-hour TSP | 116     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR10   | Sunny   | 09:09      | 1-hour TSP | 105     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR10   | Sunny   | 10:11      | 1-hour TSP | 83      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | AQMS1   | Sunny   | 08:54      | 1-hour TSP | 176     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | AQMS1   | Sunny   | 09:56      | 1-hour TSP | 237     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | AQMS1   | Sunny   | 10:58      | 1-hour TSP | 211     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | AQMS1   | Sunny   | 13:28      | 1-hour TSP | 243     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | AQMS1   | Sunny   | 14:30      | 1-hour TSP | 243     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | AQMS1   | Sunny   | 15:32      | 1-hour TSP | 169     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR1    | Sunny   | 13:17      | 1-hour TSP | 290     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR1    | Sunny   | 14:19      | 1-hour TSP | 307     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR1    | Sunny   | 15:21      | 1-hour TSP | 262     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR5    | Sunny   | 13:05      | 1-hour TSP | 147     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR5    | Sunny   | 14:07      | 1-hour TSP | 191     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR5    | Sunny   | 15:09      | 1-hour TSP | 147     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR6    | Sunny   | 12:53      | 1-hour TSP | 130     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR6    | Sunny   | 13:55      | 1-hour TSP | 164     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR6    | Sunny   | 14:57      | 1-hour TSP | 112     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR10   | Sunny   | 12:42      | 1-hour TSP | 251     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR10   | Sunny   | 13:44      | 1-hour TSP | 79      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR10   | Sunny   | 14:46      | 1-hour TSP | 90      | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters  | Results | units |
|---------|------------|------------|---------|---------|------------|-------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR10   | Cloudy  | 08:00      | 1-hour TSP  | 163     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR10   | Cloudy  | 09:02      | 1-hour TSP  | 112     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR10   | Cloudy  | 10:04      | 1-hour TSP  | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR6    | Cloudy  | 08:13      | 1-hour TSP  | 194     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR6    | Cloudy  | 09:15      | 1-hour TSP  | 193     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR6    | Cloudy  | 10:17      | 1-hour TSP  | 117     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR5    | Cloudy  | 08:24      | 1-hour TSP  | 184     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR5    | Cloudy  | 09:26      | 1-hour TSP  | 229     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR5    | Cloudy  | 10:28      | 1-hour TSP  | 198     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR1    | Cloudy  | 08:36      | 1-hour TSP  | 232     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR1    | Cloudy  | 09:38      | 1-hour TSP  | 194     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR1    | Cloudy  | 10:40      | 1-hour TSP  | 208     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | AQMS1   | Cloudy  | 08:47      | 1-hour TSP  | 199     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | AQMS1   | Cloudy  | 09:49      | 1-hour TSP  | 171     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | AQMS1   | Cloudy  | 10:51      | 1-hour TSP  | 157     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR10   | Sunny   | 11:46      | 24-hour TSP | 86      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | AQMS1   | Sunny   | 12:31      | 24-hour TSP | 94      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR1    | Sunny   | 12:19      | 24-hour TSP | 93      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR5    | Sunny   | 12:08      | 24-hour TSP | 95      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-01 | ASR6    | Sunny   | 11:57      | 24-hour TSP | 97      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | AQMS1   | Sunny   | 11:52      | 24-hour TSP | 81      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR10   | Sunny   | 11:06      | 24-hour TSP | 59      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR6    | Sunny   | 11:18      | 24-hour TSP | 76      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR1    | Sunny   | 11:41      | 24-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-04 | ASR5    | Sunny   | 11:29      | 24-hour TSP | 92      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR1    | Cloudy  | 16:26      | 24-hour TSP | 151     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR5    | Cloudy  | 16:14      | 24-hour TSP | 121     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR6    | Cloudy  | 16:02      | 24-hour TSP | 100     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | ASR10   | Cloudy  | 15:51      | 24-hour TSP | 75      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-07 | AQMS1   | Cloudy  | 16:38      | 24-hour TSP | 115     | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters  | Results | units |
|---------|------------|------------|---------|---------|------------|-------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR6    | Sunny   | 16:50      | 24-hour TSP | 107     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR5    | Sunny   | 17:02      | 24-hour TSP | 101     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR1    | Sunny   | 17:14      | 24-hour TSP | 121     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | AQMS1   | Sunny   | 17:26      | 24-hour TSP | 118     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-10 | ASR10   | Sunny   | 16:39      | 24-hour TSP | 101     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR10   | Cloudy  | 16:22      | 24-hour TSP | 67      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | AQMS1   | Cloudy  | 17:08      | 24-hour TSP | 58      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR1    | Cloudy  | 16:56      | 24-hour TSP | 64      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR5    | Cloudy  | 16:45      | 24-hour TSP | 76      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-13 | ASR6    | Cloudy  | 16:34      | 24-hour TSP | 66      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR6    | Sunny   | 11:24      | 24-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR5    | Sunny   | 11:36      | 24-hour TSP | 106     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR1    | Sunny   | 11:48      | 24-hour TSP | 92      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | AQMS1   | Sunny   | 12:00      | 24-hour TSP | 90      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-16 | ASR10   | Sunny   | 11:13      | 24-hour TSP | 85      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | AQMS1   | Sunny   | 16:03      | 24-hour TSP | 98      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR10   | Sunny   | 15:16      | 24-hour TSP | 95      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR6    | Sunny   | 15:28      | 24-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR5    | Sunny   | 15:39      | 24-hour TSP | 148     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-19 | ASR1    | Sunny   | 15:51      | 24-hour TSP | 118     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | AQMS1   | Sunny   | 16:53      | 24-hour TSP | 113     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR10   | Sunny   | 16:08      | 24-hour TSP | 79      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR6    | Sunny   | 16:19      | 24-hour TSP | 93      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR5    | Sunny   | 16:29      | 24-hour TSP | 134     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-22 | ASR1    | Sunny   | 16:41      | 24-hour TSP | 128     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR1    | Sunny   | 11:48      | 24-hour TSP | 78      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR5    | Sunny   | 11:36      | 24-hour TSP | 78      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR6    | Sunny   | 11:24      | 24-hour TSP | 71      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | ASR10   | Sunny   | 11:13      | 24-hour TSP | 52      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-25 | AQMS1   | Sunny   | 12:00      | 24-hour TSP | 61      | ug/m3 |

| Project | Works      | Date       | Station | Weather | Start time | Parameters  | Results | units |
|---------|------------|------------|---------|---------|------------|-------------|---------|-------|
| TMCLKL  | HY/2012/08 | 2015-01-28 | AQMS1   | Sunny   | 16:34      | 24-hour TSP | 90      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR1    | Sunny   | 16:23      | 24-hour TSP | 114     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR5    | Sunny   | 16:11      | 24-hour TSP | 91      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR6    | Sunny   | 15:59      | 24-hour TSP | 61      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-28 | ASR10   | Sunny   | 15:48      | 24-hour TSP | 66      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR10   | Cloudy  | 11:06      | 24-hour TSP | 61      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR6    | Cloudy  | 11:19      | 24-hour TSP | 64      | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR5    | Cloudy  | 11:30      | 24-hour TSP | 108     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | ASR1    | Cloudy  | 11:42      | 24-hour TSP | 113     | ug/m3 |
| TMCLKL  | HY/2012/08 | 2015-01-31 | AQMS1   | Cloudy  | 11:53      | 24-hour TSP | 112     | ug/m3 |

## Appendix H

## Meteorological Data

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/01                                                          | 0:00         | 0.4                         | 45                                |  |
| 15/01/01                                                          | 1:00         | 0.4                         | 38                                |  |
| 15/01/01                                                          | 2:00         | 0                           | 52                                |  |
| 15/01/01                                                          | 3:00         | 0                           | 10                                |  |
| 15/01/01                                                          | 4:00         | 0                           | 345                               |  |
| 15/01/01                                                          | 5:00         | 0.9                         | 112                               |  |
| 15/01/01                                                          | 6:00         | 1.8                         | 37                                |  |
| 15/01/01                                                          | 7:00         | 1.8                         | 41                                |  |
| 15/01/01                                                          | 8:00         | 3.6                         | 36                                |  |
| 15/01/01                                                          | 9:00         | 4                           | 48                                |  |
| 15/01/01                                                          | 10:00        | 3.6                         | 52                                |  |
| 15/01/01                                                          | 11:00        | 3.1                         | 51                                |  |
| 15/01/01                                                          | 12:00        | 2.2                         | 50                                |  |
| 15/01/01                                                          | 13:00        | 0.9                         | 48                                |  |
|                                                                   |              | 0.9                         | 254                               |  |
| 15/01/01<br>15/01/01                                              | 14:00        | 0.9                         | 271                               |  |
|                                                                   | 15:00        |                             |                                   |  |
| 15/01/01                                                          | 16:00        | 0.9                         | 174                               |  |
| 15/01/01                                                          | 17:00        | 0.4                         | 200                               |  |
| 15/01/01                                                          | 18:00        | 0.4                         | 146                               |  |
| 15/01/01                                                          | 19:00        | 0.4                         | 91                                |  |
| 15/01/01                                                          | 20:00        | 0                           | 11                                |  |
| 15/01/01                                                          | 21:00        | 0                           | 15                                |  |
| 15/01/01                                                          | 22:00        | 0                           | 23                                |  |
| 15/01/01                                                          | 23:00        | 0                           | 21                                |  |
| 15/01/02                                                          | 0:00         | 0                           | 40                                |  |
| 15/01/02                                                          | 1:00         | 0.4                         | 100                               |  |
| 15/01/02                                                          | 2:00         | 0.4                         | 51                                |  |
| 15/01/02                                                          | 3:00         | 0.9                         | 47                                |  |
| 15/01/02                                                          | 4:00         | 0.4                         | 84                                |  |
| 15/01/02                                                          | 5:00         | 1.3                         | 39                                |  |
| 15/01/02                                                          | 6:00         | 1.8                         | 42                                |  |
| 15/01/02                                                          | 7:00         | 1.3                         | 51                                |  |
| 15/01/02                                                          | 8:00         | 1.8                         | 46                                |  |
| 15/01/02                                                          | 9:00         | 1.3                         | 48                                |  |
| 15/01/02                                                          | 10:00        | 1.3                         | 52                                |  |
| 15/01/02                                                          | 11:00        | 1.3                         | 39                                |  |
| 15/01/02                                                          | 12:00        | 1.8                         | 41                                |  |
| 15/01/02                                                          | 13:00        | 1.8                         | 191                               |  |
| 15/01/02                                                          | 14:00        | 1.3                         | 175                               |  |
| 15/01/02                                                          | 15:00        | 1.3                         | 282                               |  |
| 15/01/02                                                          | 16:00        | 0.4                         | 245                               |  |
| 15/01/02                                                          | 17:00        | 0.4                         | 177                               |  |
|                                                                   |              | 2.2                         | 140                               |  |
| 15/01/02                                                          | 18:00        |                             |                                   |  |
| 15/01/02                                                          | 19:00        | 3.1                         | 172                               |  |
| 15/01/02                                                          | 20:00        | 2.2                         | 121                               |  |
| 15/01/02                                                          | 21:00        | 0.9                         | 101                               |  |
| 15/01/02                                                          | 22:00        | 0.9                         | 95                                |  |
| 15/01/02                                                          | 23:00        | 0.4                         | 94                                |  |
| 15/01/04                                                          | 0:00         | 1.3                         | 84                                |  |
| 15/01/04                                                          | 1:00         | 1.3                         | 79                                |  |
| 15/01/04                                                          | 2:00         | 0.9                         | 100                               |  |
| 15/01/04                                                          | 3:00         | 0.9                         | 95                                |  |
| 15/01/04                                                          | 4:00         | 0.4                         | 88                                |  |
| 15/01/04                                                          | 5:00         | 0.9                         | 46                                |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/04                                                          | 6:00         | 0.4                         | 74                                |  |
| 15/01/04                                                          | 7:00         | 0.4                         | 47                                |  |
| 15/01/04                                                          | 8:00         | 0.4                         | 84                                |  |
| 15/01/04                                                          | 9:00         | 0.4                         | 75                                |  |
| 15/01/04                                                          | 10:00        | 0.9                         | 95                                |  |
| 15/01/04                                                          | 11:00        | 1.3                         | 146                               |  |
| 15/01/04                                                          | 12:00        | 1.8                         | 168                               |  |
| 15/01/04                                                          | 13:00        | 1.8                         | 172                               |  |
| 15/01/04                                                          | 14:00        | 0.9                         | 301                               |  |
| 15/01/04                                                          | 15:00        | 0.4                         | 312                               |  |
| 15/01/04                                                          | 16:00        | 0.4                         | 308                               |  |
| 15/01/04                                                          | 17:00        | 1.3                         | 94                                |  |
| 15/01/04                                                          | 18:00        | 1.3                         | 89                                |  |
| 15/01/04                                                          | 19:00        | 2.2                         | 115                               |  |
| 15/01/04                                                          | 20:00        | 2.2                         | 121                               |  |
| 15/01/04                                                          | 21:00        | 1.8                         | 94                                |  |
|                                                                   |              |                             |                                   |  |
| 15/01/04<br>15/01/04                                              | 22:00        | 1.8<br>2.2                  | 123                               |  |
|                                                                   | 23:00        | •                           |                                   |  |
| 15/01/05                                                          | 0:00         | 2.2                         | 142                               |  |
| 15/01/05                                                          | 1:00         | 1.8                         | 138                               |  |
| 15/01/05                                                          | 2:00         | 1.8                         | 127                               |  |
| 15/01/05                                                          | 3:00         | 1.8                         | 115                               |  |
| 15/01/05                                                          | 4:00         | 1.8                         | 164                               |  |
| 15/01/05                                                          | 5:00         | 1.8                         | 137                               |  |
| 15/01/05                                                          | 6:00         | 2.2                         | 124                               |  |
| 15/01/05                                                          | 7:00         | 2.2                         | 119                               |  |
| 15/01/05                                                          | 8:00         | 2.2                         | 126                               |  |
| 15/01/05                                                          | 9:00         | 1.8                         | 81                                |  |
| 15/01/05                                                          | 10:00        | 1.3                         | 95                                |  |
| 15/01/05                                                          | 11:00        | 2.2                         | 101                               |  |
| 15/01/05                                                          | 12:00        | 2.2                         | 131                               |  |
| 15/01/05                                                          | 13:00        | 1.3                         | 101                               |  |
| 15/01/05                                                          | 14:00        | 1.8                         | 95                                |  |
| 15/01/05                                                          | 15:00        | 1.3                         | 94                                |  |
| 15/01/05                                                          | 16:00        | 1.8                         | 97                                |  |
| 15/01/05                                                          | 17:00        | 1.8                         | 92                                |  |
| 15/01/05                                                          | 18:00        | 2.2                         | 96                                |  |
| 15/01/05                                                          | 19:00        | 1.8                         | 104                               |  |
| 15/01/05                                                          | 20:00        | 1.3                         | 111                               |  |
| 15/01/05                                                          | 21:00        | 1.8                         | 114                               |  |
| 15/01/05                                                          | 22:00        | 1.8                         | 100                               |  |
| 15/01/05                                                          | 23:00        | 2.2                         | 125                               |  |
| 15/01/07                                                          | 0:00         | 0                           | 101                               |  |
| 15/01/07                                                          | 1:00         | 0                           | 104                               |  |
| 15/01/07                                                          | 2:00         | 0.4                         | 301                               |  |
| 15/01/07                                                          | 3:00         | 0.4                         | 305                               |  |
| 15/01/07                                                          | 4:00         | 0                           | 346                               |  |
| 15/01/07                                                          | 5:00         | 0                           | 351                               |  |
|                                                                   |              | 0                           | 142                               |  |
| 15/01/07                                                          | 6:00<br>7:00 |                             | 5                                 |  |
| 15/01/07                                                          | 7:00         | 1.3                         |                                   |  |
| 15/01/07                                                          | 8:00         | 0.4                         | 116                               |  |
| 15/01/07                                                          | 9:00         | 0.9                         | 45                                |  |
| 15/01/07                                                          | 10:00        | 0.4                         | 40                                |  |
| 15/01/07                                                          | 11:00        | 1.8                         | 49                                |  |

|                 | Meteorolo    | gical Data for Impact Monitoring in tl | he reporting period               |
|-----------------|--------------|----------------------------------------|-----------------------------------|
| Date (yy-mm-dd) | Time (24hrs) | Average of Wind Speed (m/s)            | Average of Wind Direction (degree |
| 15/01/07        | 12:00        | 2.7                                    | 51                                |
| 15/01/07        | 13:00        | 2.2                                    | 47                                |
| 15/01/07        | 14:00        | 1.3                                    | 43                                |
| 15/01/07        | 15:00        | 1.8                                    | 42                                |
| 15/01/07        | 16:00        | 1.3                                    | 51                                |
| 15/01/07        | 17:00        | 1.8                                    | 5                                 |
| 15/01/07        | 18:00        | 2.2                                    | 4                                 |
| 15/01/07        | 19:00        | 2.2                                    | 1                                 |
| 15/01/07        | 20:00        | 1.3                                    | 354                               |
| 15/01/07        | 21:00        | 1.3                                    | 355                               |
| 15/01/07        | 22:00        | 1.3                                    | 2                                 |
| 15/01/07        | 23:00        | 0.9                                    | 4                                 |
| 15/01/08        | 0:00         | 0.4                                    | 12                                |
| 15/01/08        | 1:00         | 1.3                                    | 39                                |
| 15/01/08        | 2:00         | 2.7                                    | 41                                |
| 15/01/08        | 3:00         | 4.5                                    | 49                                |
|                 |              |                                        |                                   |
| 15/01/08        | 4:00         | 4.5                                    | 51                                |
| 15/01/08        | 5:00         | 4.5                                    | 62                                |
| 15/01/08        | 6:00         | 4.9                                    | 48                                |
| 15/01/08        | 7:00         | 4.9                                    | 44                                |
| 15/01/08        | 8:00         | 4                                      | 49                                |
| 15/01/08        | 9:00         | 4                                      | 47                                |
| 15/01/08        | 10:00        | 3.1                                    | 42                                |
| 15/01/08        | 11:00        | 2.7                                    | 38                                |
| 15/01/08        | 12:00        | 2.2                                    | 41                                |
| 15/01/08        | 13:00        | 1.8                                    | 38                                |
| 15/01/08        | 14:00        | 1.3                                    | 177                               |
| 15/01/08        | 15:00        | 1.3                                    | 225                               |
| 15/01/08        | 16:00        | 1.8                                    | 203                               |
| 15/01/08        | 17:00        | 0.4                                    | 242                               |
| 15/01/08        | 18:00        | 0.4                                    | 115                               |
| 15/01/08        | 19:00        | 0.9                                    | 104                               |
| 15/01/08        | 20:00        | 0                                      | 113                               |
| 15/01/08        | 21:00        | 0.4                                    | 25                                |
| 15/01/08        | 22:00        | 0                                      | 21                                |
| 15/01/08        | 23:00        | 0                                      | 26                                |
| 15/01/10        | 0:00         | 0.4                                    | 5                                 |
| 15/01/10        | 1:00         | 0.4                                    | 8                                 |
| 15/01/10        | 2:00         | 0.4                                    | 9                                 |
|                 | 3:00         | 0                                      | 354                               |
| 15/01/10        |              | 0                                      |                                   |
| 15/01/10        | 4:00         | 0.4                                    | 353<br>52                         |
| 15/01/10        | 5:00         |                                        | 52                                |
| 15/01/10        | 6:00         | 1.3                                    | 49                                |
| 15/01/10        | 7:00         | 0.4                                    | 41                                |
| 15/01/10        | 8:00         | 0.4                                    | 45                                |
| 15/01/10        | 9:00         | 0.9                                    | 92                                |
| 15/01/10        | 10:00        | 1.3                                    | 95                                |
| 15/01/10        | 11:00        | 1.3                                    | 178                               |
| 15/01/10        | 12:00        | 1.3                                    | 181                               |
| 15/01/10        | 13:00        | 1.3                                    | 180                               |
| 15/01/10        | 14:00        | 1.3                                    | 168                               |
| 15/01/10        | 15:00        | 1.3                                    | 175                               |
| 15/01/10        | 16:00        | 0.4                                    | 84                                |
| 15/01/10        | 17:00        | 0.9                                    | 127                               |

|                 | Meteorolo    | gical Data for Impact Monitoring in th | e reporting period                       |
|-----------------|--------------|----------------------------------------|------------------------------------------|
| Date (yy-mm-dd) | Time (24hrs) | Average of Wind Speed (m/s)            | <b>Average of Wind Direction (degree</b> |
| 15/01/10        | 18:00        | 0                                      | 265                                      |
| 15/01/10        | 19:00        | 0.4                                    | 5                                        |
| 15/01/10        | 20:00        | 0.4                                    | 2                                        |
| 15/01/10        | 21:00        | 1.8                                    | 353                                      |
| 15/01/10        | 22:00        | 0.4                                    | 96                                       |
| 15/01/10        | 23:00        | 0                                      | 21                                       |
| 15/01/11        | 0:00         | 0                                      | 28                                       |
| 15/01/11        | 1:00         | 0.4                                    | 12                                       |
| 15/01/11        | 2:00         | 1.3                                    | 48                                       |
| 15/01/11        | 3:00         | 0.9                                    | 51                                       |
| 15/01/11        | 4:00         | 0.4                                    | 47                                       |
| 15/01/11        | 5:00         | 1.3                                    | 48                                       |
| 15/01/11        | 6:00         | 0.9                                    | 39                                       |
| 15/01/11        | 7:00         | 1.3                                    | 40                                       |
| 15/01/11        | 8:00         | 1.3                                    | 46                                       |
| 15/01/11        | 9:00         | 1.3                                    | 52                                       |
| 15/01/11        | 10:00        | 0.9                                    | 10                                       |
| 15/01/11        | 11:00        | 3.1                                    | 47                                       |
| 15/01/11        | 12:00        | 3.1                                    | 43                                       |
| 15/01/11        | 13:00        | 2.2                                    | 52                                       |
| 15/01/11        | 14:00        | 1.3                                    | 251                                      |
| 15/01/11        | 15:00        | 0.4                                    | 200                                      |
| 15/01/11        | 16:00        | 0.9                                    | 301                                      |
| 15/01/11        | 17:00        | 0                                      | 174                                      |
| 15/01/11        | 18:00        | 0.9                                    | 2                                        |
| 15/01/11        | 19:00        | 2.7                                    | 10                                       |
| 15/01/11        | 20:00        | 2.7                                    | 4                                        |
| 15/01/11        | 21:00        | 2.2                                    | 23                                       |
| 15/01/11        | 22:00        | 0.9                                    | 21                                       |
| 15/01/11        | 23:00        | 1.3                                    | 85                                       |
| 15/01/13        | 0:00         | 6.3                                    | 46                                       |
| 15/01/13        | 1:00         | 6.3                                    | 52                                       |
| 15/01/13        | 2:00         | 4.9                                    | 47                                       |
| 15/01/13        | 3:00         | 1.8                                    | 79                                       |
| 15/01/13        | 4:00         | 0.9                                    | 333                                      |
| 15/01/13        | 5:00         | 0                                      | 280                                      |
| 15/01/13        | 6:00         | 0.9                                    | 20                                       |
| 15/01/13        | 7:00         | 0.9                                    | 315                                      |
| 15/01/13        | 8:00         | 1.8                                    | 12                                       |
| 15/01/13        | 9:00         | 0.9                                    | 23                                       |
| 15/01/13        | 10:00        | 0.9                                    | 341                                      |
| 15/01/13        | 11:00        | 0.4                                    | 352                                      |
| 15/01/13        | 12:00        | 0.9                                    | 358                                      |
| 15/01/13        | 13:00        | 1.8                                    | 3                                        |
| 15/01/13        | 14:00        | 1.8                                    | 11                                       |
| 15/01/13        | 15:00        | 1.8                                    | 12                                       |
| 15/01/13        | 16:00        | 1.3                                    | 5                                        |
| 15/01/13        | 17:00        | 0.9                                    | 6                                        |
| 15/01/13        | 18:00        | 0.9                                    | 351                                      |
| 15/01/13        | 19:00        | 0.4                                    | 349                                      |
| 15/01/13        | 20:00        | 0                                      | 6                                        |
| 15/01/13        | 21:00        | 1.3                                    | 41                                       |
| 15/01/13        | 22:00        | 1.8                                    | 2                                        |
| 15/01/13        | 23:00        | 0.4                                    | 357                                      |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/14                                                          | 0:00         | 0.4                         | 62                                |  |
| 15/01/14                                                          | 1:00         | 0.4                         | 51                                |  |
| 15/01/14                                                          | 2:00         | 0                           | 54                                |  |
| 15/01/14                                                          | 3:00         | 0.9                         | 22                                |  |
| 15/01/14                                                          | 4:00         | 1.8                         | 5                                 |  |
| 15/01/14                                                          | 5:00         | 1.3                         | 11                                |  |
| 15/01/14                                                          | 6:00         | 0.9                         | 4                                 |  |
| 15/01/14                                                          | 7:00         | 0.4                         | 346                               |  |
| 15/01/14                                                          | 8:00         | 0.4                         | 351                               |  |
| 15/01/14                                                          | 9:00         | 0.9                         | 115                               |  |
| 15/01/14                                                          | 10:00        | 2.2                         | 62                                |  |
| 15/01/14                                                          | 11:00        | 2.7                         | 39                                |  |
| 15/01/14                                                          | 12:00        | 2.2                         | 47                                |  |
|                                                                   | +            |                             |                                   |  |
| 15/01/14                                                          | 13:00        | 1.8                         | 48                                |  |
| 15/01/14                                                          | 14:00        | 1.3                         | 35                                |  |
| 15/01/14                                                          | 15:00        | 1.8                         | 3                                 |  |
| 15/01/14                                                          | 16:00        | 1.8                         | 355                               |  |
| 15/01/14                                                          | 17:00        | 2.2                         | 4                                 |  |
| 15/01/14                                                          | 18:00        | 1.8                         | 6                                 |  |
| 15/01/14                                                          | 19:00        | 1.3                         | 8                                 |  |
| 15/01/14                                                          | 20:00        | 0.9                         | 10                                |  |
| 15/01/14                                                          | 21:00        | 2.2                         | 12                                |  |
| 15/01/14                                                          | 22:00        | 3.1                         | 38                                |  |
| 15/01/14                                                          | 23:00        | 2.7                         | 42                                |  |
| 15/01/16                                                          | 0:00         | 0.4                         | 5                                 |  |
| 15/01/16                                                          | 1:00         | 0.4                         | 6                                 |  |
| 15/01/16                                                          | 2:00         | 0                           | 358                               |  |
| 15/01/16                                                          | 3:00         | 0                           | 4                                 |  |
| 15/01/16                                                          | 4:00         | 0.4                         | 6                                 |  |
| 15/01/16                                                          | 5:00         | 1.3                         | 5                                 |  |
| 15/01/16                                                          | 6:00         | 0.4                         | 11                                |  |
| 15/01/16                                                          | 7:00         | 0                           | 226                               |  |
| 15/01/16                                                          | 8:00         | 0.9                         | 35                                |  |
| 15/01/16                                                          | 9:00         | 2.7                         | 33                                |  |
|                                                                   | 10:00        |                             | 46                                |  |
| 15/01/16                                                          |              | 2.2                         |                                   |  |
| 15/01/16                                                          | 11:00        | 2.2                         | 49                                |  |
| 15/01/16                                                          | 12:00        | 1.3                         | 51                                |  |
| 15/01/16                                                          | 13:00        | 1.3                         | 357                               |  |
| 15/01/16                                                          | 14:00        | 1.8                         | 351                               |  |
| 15/01/16                                                          | 15:00        | 1.3                         | 346                               |  |
| 15/01/16                                                          | 16:00        | 1.8                         | 301                               |  |
| 15/01/16                                                          | 17:00        | 2.2                         | 310                               |  |
| 15/01/16                                                          | 18:00        | 1.3                         | 351                               |  |
| 15/01/16                                                          | 19:00        | 0.9                         | 6                                 |  |
| 15/01/16                                                          | 20:00        | 0                           | 23                                |  |
| 15/01/16                                                          | 21:00        | 0.4                         | 46                                |  |
| 15/01/16                                                          | 22:00        | 0                           | 41                                |  |
| 15/01/16                                                          | 23:00        | 0                           | 51                                |  |
| 15/01/17                                                          | 0:00         | 1.3                         | 81                                |  |
| 15/01/17                                                          | 1:00         | 2.7                         | 76                                |  |
| 15/01/17                                                          | 2:00         | 2.7                         | 92                                |  |
| 15/01/17                                                          | 3:00         | 2.7                         | 50                                |  |
| 15/01/17                                                          | 4:00         | 1.8                         | 98                                |  |
| 10/01/1/                                                          | 1.00         | 1.0                         | 100                               |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/17                                                          | 6:00         | 3.1                         | 35                                |  |
| 15/01/17                                                          | 7:00         | 3.1                         | 62                                |  |
| 15/01/17                                                          | 8:00         | 2.2                         | 54                                |  |
| 15/01/17                                                          | 9:00         | 2.2                         | 46                                |  |
| 15/01/17                                                          | 10:00        | 1.8                         | 52                                |  |
| 15/01/17                                                          | 11:00        | 2.2                         | 37                                |  |
| 15/01/17                                                          | 12:00        | 2.2                         | 128                               |  |
| 15/01/17                                                          | 13:00        | 4.5                         | 127                               |  |
| 15/01/17                                                          | 14:00        | 4                           | 130                               |  |
| 15/01/17                                                          | 15:00        | 3.6                         | 169                               |  |
| 15/01/17                                                          | 16:00        | 1.8                         | 179                               |  |
| 15/01/17                                                          | 17:00        | 2.7                         | 177                               |  |
| 15/01/17                                                          | 18:00        | 1.3                         | 167                               |  |
| 15/01/17                                                          | 19:00        | 1.3                         | 174                               |  |
| 15/01/17                                                          | 20:00        | 0.4                         | 72                                |  |
| 15/01/17                                                          | 21:00        | 0.4                         | 116                               |  |
|                                                                   |              |                             |                                   |  |
| 15/01/17                                                          | 22:00        | 0.9                         | 121                               |  |
| 15/01/17                                                          | 23:00        | 0.4                         | 100                               |  |
| 15/01/19                                                          | 0:00         | 1.3                         | 23                                |  |
| 15/01/19                                                          | 1:00         | 0.9                         | 25                                |  |
| 15/01/19                                                          | 2:00         | 2.2                         | 46                                |  |
| 15/01/19                                                          | 3:00         | 4                           | 47                                |  |
| 15/01/19                                                          | 4:00         | 3.6                         | 51                                |  |
| 15/01/19                                                          | 5:00         | 3.6                         | 55                                |  |
| 15/01/19                                                          | 6:00         | 3.6                         | 60                                |  |
| 15/01/19                                                          | 7:00         | 2.7                         | 54                                |  |
| 15/01/19                                                          | 8:00         | 2.2                         | 49                                |  |
| 15/01/19                                                          | 9:00         | 2.2                         | 52                                |  |
| 15/01/19                                                          | 10:00        | 2.7                         | 41                                |  |
| 15/01/19                                                          | 11:00        | 3.1                         | 47                                |  |
| 15/01/19                                                          | 12:00        | 2.2                         | 39                                |  |
| 15/01/19                                                          | 13:00        | 1.8                         | 51                                |  |
| 15/01/19                                                          | 14:00        | 1.3                         | 256                               |  |
| 15/01/19                                                          | 15:00        | 0.9                         | 263                               |  |
| 15/01/19                                                          | 16:00        | 0.9                         | 341                               |  |
| 15/01/19                                                          | 17:00        | 0.9                         | 352                               |  |
| 15/01/19                                                          | 18:00        | 0.4                         | 243                               |  |
| 15/01/19                                                          | 19:00        | 0.4                         | 177                               |  |
| 15/01/19                                                          | 20:00        | 1.8                         | 179                               |  |
| 15/01/19                                                          | 21:00        | 0.4                         | 175                               |  |
| 15/01/19                                                          | 22:00        | 0                           | 84                                |  |
| 15/01/19                                                          | 23:00        | 0                           | 101                               |  |
| 15/01/20                                                          | 0:00         | 0.4                         | 9                                 |  |
| 15/01/20                                                          | 1:00         | 0.4                         | 118                               |  |
| 15/01/20                                                          | 2:00         | 0.9                         | 121                               |  |
|                                                                   | 3:00         | 0.9                         | 114                               |  |
| 15/01/20<br>15/01/20                                              | 4:00         | 1.8                         | 114                               |  |
|                                                                   | 5:00         |                             | 109                               |  |
| 15/01/20                                                          |              | 1.3                         |                                   |  |
| 15/01/20                                                          | 6:00         | 1.3                         | 84                                |  |
| 15/01/20                                                          | 7:00         | 1.3                         | 75                                |  |
| 15/01/20                                                          | 8:00         | 1.3                         | 41                                |  |
| 15/01/20                                                          | 9:00         | 1.3                         | 94                                |  |
| 15/01/20                                                          | 10:00        | 0.9                         | 127                               |  |
| 15/01/20                                                          | 11:00        | 0.9                         | 142                               |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/20                                                          | 12:00        | 0.4                         | 178                               |  |
| 15/01/20                                                          | 13:00        | 0.4                         | 200                               |  |
| 15/01/20                                                          | 14:00        | 0.9                         | 243                               |  |
| 15/01/20                                                          | 15:00        | 1.3                         | 251                               |  |
| 15/01/20                                                          | 16:00        | 1.3                         | 238                               |  |
| 15/01/20                                                          | 17:00        | 0.9                         | 267                               |  |
| 15/01/22                                                          | 0:00         | 0                           | 10                                |  |
| 15/01/22                                                          | 1:00         | 0                           | 5                                 |  |
| 15/01/22                                                          | 2:00         | 0                           | 9                                 |  |
| 15/01/22                                                          | 3:00         | 1.8                         | 43                                |  |
| 15/01/22                                                          | 4:00         | 2.7                         | 35                                |  |
| 15/01/22                                                          | 5:00         | 3.1                         | 62                                |  |
| 15/01/22                                                          | 6:00         | 4                           | 51                                |  |
| 15/01/22                                                          | 7:00         | 4                           | 48                                |  |
|                                                                   | 8:00         | 2.2                         | 44                                |  |
| 15/01/22                                                          |              | 2.2                         | 39                                |  |
| 15/01/22                                                          | 9:00         |                             |                                   |  |
| 15/01/22                                                          | 10:00        | 2.2                         | 46                                |  |
| 15/01/22                                                          | 11:00        | 1.3                         | 175                               |  |
| 15/01/22                                                          | 12:00        | 1.8                         | 182                               |  |
| 15/01/22                                                          | 13:00        | 0.9                         | 176                               |  |
| 15/01/22                                                          | 14:00        | 3.6                         | 69                                |  |
| 15/01/22                                                          | 15:00        | 3.1                         | 182                               |  |
| 15/01/22                                                          | 16:00        | 0.9                         | 245                               |  |
| 15/01/22                                                          | 17:00        | 0.4                         | 236                               |  |
| 15/01/22                                                          | 18:00        | 0.9                         | 168                               |  |
| 15/01/22                                                          | 19:00        | 0.9                         | 136                               |  |
| 15/01/22                                                          | 20:00        | 0.4                         | 91                                |  |
| 15/01/22                                                          | 21:00        | 0                           | 85                                |  |
| 15/01/22                                                          | 22:00        | 0.4                         | 87                                |  |
| 15/01/22                                                          | 23:00        | 0.4                         | 93                                |  |
| 15/01/23                                                          | 0:00         | 0.3                         | 91                                |  |
| 15/01/23                                                          | 1:00         | 0.1                         | 94                                |  |
| 15/01/23                                                          | 2:00         | 0.2                         | 95                                |  |
| 15/01/23                                                          | 3:00         | 0.4                         | 101                               |  |
| 15/01/23                                                          | 4:00         | 0                           | 105                               |  |
| 15/01/23                                                          | 5:00         | 0.4                         | 121                               |  |
| 15/01/23                                                          | 6:00         | 0                           | 111                               |  |
| 15/01/23                                                          | 7:00         | 0.4                         | 98                                |  |
| 15/01/23                                                          | 8:00         | 0                           | 99                                |  |
| 15/01/23                                                          | 9:00         | 0.4                         | 101                               |  |
| 15/01/23                                                          | 10:00        | 1.3                         | 135                               |  |
| 15/01/23                                                          | 11:00        | 3.1                         | 142                               |  |
|                                                                   |              |                             | 177                               |  |
| 15/01/23                                                          | 12:00        | 3.6                         |                                   |  |
| 15/01/23                                                          | 13:00        | 2.7                         | 151                               |  |
| 15/01/23                                                          | 14:00        | 2.2                         | 146                               |  |
| 15/01/23                                                          | 15:00        | 1.8                         | 133                               |  |
| 15/01/23                                                          | 16:00        | 2.2                         | 131                               |  |
| 15/01/23                                                          | 17:00        | 1.8                         | 111                               |  |
| 15/01/23                                                          | 18:00        | 1.8                         | 109                               |  |
| 15/01/23                                                          | 19:00        | 2.2                         | 114                               |  |
| 15/01/23                                                          | 20:00        | 2.2                         | 115                               |  |
| 15/01/23                                                          | 21:00        | 1.8                         | 165                               |  |
| 15/01/23                                                          | 22:00        | 2.2                         | 121                               |  |
| 15/01/23                                                          | 23:00        | 2.7                         | 124                               |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/24                                                          | 0:00         | 1.8                         | 129                               |  |
| 15/01/24                                                          | 1:00         | 1.8                         | 119                               |  |
| 15/01/24                                                          | 2:00         | 2.2                         | 138                               |  |
| 15/01/24                                                          | 3:00         | 2.7                         | 101                               |  |
| 15/01/24                                                          | 4:00         | 2.7                         | 109                               |  |
| 15/01/24                                                          | 5:00         | 3.1                         | 112                               |  |
| 15/01/24                                                          | 6:00         | 3.1                         | 131                               |  |
| 15/01/24                                                          | 7:00         | 2.7                         | 115                               |  |
| 15/01/24                                                          | 8:00         | 2.7                         | 104                               |  |
| 15/01/24                                                          | 9:00         | 2.7                         | 122                               |  |
| 15/01/24                                                          | 10:00        | 3.1                         | 117                               |  |
| 15/01/24                                                          | 11:00        | 3.1                         | 115                               |  |
| 15/01/24                                                          | 12:00        | 3.1                         | 137                               |  |
| 15/01/24                                                          | 13:00        | 3.6                         | 141                               |  |
|                                                                   |              | 3.6                         | 140                               |  |
| 15/01/24                                                          | 14:00        |                             | 131                               |  |
| 15/01/24                                                          | 15:00        | 4                           |                                   |  |
| 15/01/24                                                          | 16:00        | 3.1                         | 121                               |  |
| 15/01/24                                                          | 17:00        | 2.7                         | 113                               |  |
| 15/01/24                                                          | 18:00        | 2.7                         | 109                               |  |
| 15/01/24                                                          | 19:00        | 2.7                         | 117                               |  |
| 15/01/24                                                          | 20:00        | 2.7                         | 121                               |  |
| 15/01/24                                                          | 21:00        | 2.2                         | 125                               |  |
| 15/01/24                                                          | 22:00        | 3.1                         | 108                               |  |
| 15/01/24                                                          | 23:00        | 3.1                         | 119                               |  |
| 15/01/25                                                          | 0:00         | 2.7                         | 85                                |  |
| 15/01/25                                                          | 1:00         | 0.4                         | 89                                |  |
| 15/01/25                                                          | 2:00         | 2.2                         | 87                                |  |
| 15/01/25                                                          | 3:00         | 1.8                         | 92                                |  |
| 15/01/25                                                          | 4:00         | 0.9                         | 91                                |  |
| 15/01/25                                                          | 5:00         | 1.3                         | 113                               |  |
| 15/01/25                                                          | 6:00         | 1.8                         | 125                               |  |
| 15/01/25                                                          | 7:00         | 1.8                         | 109                               |  |
| 15/01/25                                                          | 8:00         | 1.3                         | 100                               |  |
| 15/01/25                                                          | 9:00         | 1.8                         | 123                               |  |
| 15/01/25                                                          | 10:00        | 1.8                         | 142                               |  |
| 15/01/25                                                          | 11:00        | 1.8                         | 133                               |  |
| 15/01/25                                                          | 12:00        | 1.3                         | 91                                |  |
| 15/01/25                                                          | 13:00        | 1.8                         | 146                               |  |
| 15/01/25                                                          | 14:00        | 1.8                         | 123                               |  |
| 15/01/25                                                          | 15:00        | 1.3                         | 85                                |  |
| 15/01/25                                                          | 16:00        | 0.9                         | 46                                |  |
|                                                                   |              | 1.3                         | 95                                |  |
| 15/01/25                                                          | 17:00        |                             | 88                                |  |
| 15/01/25                                                          | 18:00        | 1.3                         |                                   |  |
| 15/01/25                                                          | 19:00        | 1.3                         | 93                                |  |
| 15/01/25                                                          | 20:00        | 1.3                         | 91                                |  |
| 15/01/25                                                          | 21:00        | 1.3                         | 100                               |  |
| 15/01/25                                                          | 22:00        | 0.9                         | 79                                |  |
| 15/01/25                                                          | 23:00        | 0.9                         | 86                                |  |
| 15/01/26                                                          | 0:00         | 1.8                         | 92                                |  |
| 15/01/26                                                          | 1:00         | 1.3                         | 94                                |  |
| 15/01/26                                                          | 2:00         | 1.3                         | 88                                |  |
| 15/01/26                                                          | 3:00         | 0.4                         | 118                               |  |
| 15/01/26                                                          | 4:00         | 0.9                         | 74                                |  |
| 15/01/26                                                          | 5:00         | 0.1                         | 46                                |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/26                                                          | 6:00         | 0.2                         | 47                                |  |
| 15/01/26                                                          | 7:00         | 0.3                         | 51                                |  |
| 15/01/26                                                          | 8:00         | 0.1                         | 44                                |  |
| 15/01/26                                                          | 9:00         | 0.9                         | 40                                |  |
| 15/01/26                                                          | 10:00        | 0.9                         | 92                                |  |
| 15/01/26                                                          | 11:00        | 0.9                         | 113                               |  |
| 15/01/26                                                          | 12:00        | 0.9                         | 181                               |  |
| 15/01/26                                                          | 13:00        | 1.8                         | 256                               |  |
| 15/01/26                                                          | 14:00        | 1.3                         | 242                               |  |
| 15/01/26                                                          | 15:00        | 3.1                         | 240                               |  |
| 15/01/26                                                          | 16:00        | 0.9                         | 238                               |  |
| 15/01/26                                                          | 17:00        | 0.4                         | 144                               |  |
| 15/01/26                                                          | 18:00        | 1.3                         | 93                                |  |
| 15/01/26                                                          | 19:00        | 1.8                         | 98                                |  |
|                                                                   |              |                             |                                   |  |
| 15/01/26<br>15/01/26                                              | 20:00        | 1.8                         | 99                                |  |
|                                                                   |              |                             |                                   |  |
| 15/01/26                                                          | 22:00        | 1.8                         | 122                               |  |
| 15/01/26                                                          | 23:00        | 1.3                         | 109                               |  |
| 15/01/28                                                          | 0:00         | 3.1                         | 136                               |  |
| 15/01/28                                                          | 1:00         | 3.6                         | 135                               |  |
| 15/01/28                                                          | 2:00         | 4                           | 142                               |  |
| 15/01/28                                                          | 3:00         | 2.7                         | 139                               |  |
| 15/01/28                                                          | 4:00         | 2.2                         | 144                               |  |
| 15/01/28                                                          | 5:00         | 2.7                         | 151                               |  |
| 15/01/28                                                          | 6:00         | 3.6                         | 137                               |  |
| 15/01/28                                                          | 7:00         | 3.6                         | 128                               |  |
| 15/01/28                                                          | 8:00         | 3.1                         | 134                               |  |
| 15/01/28                                                          | 9:00         | 4                           | 128                               |  |
| 15/01/28                                                          | 10:00        | 4.5                         | 136                               |  |
| 15/01/28                                                          | 11:00        | 4                           | 114                               |  |
| 15/01/28                                                          | 12:00        | 3.6                         | 144                               |  |
| 15/01/28                                                          | 13:00        | 3.1                         | 151                               |  |
| 15/01/28                                                          | 14:00        | 3.6                         | 136                               |  |
| 15/01/28                                                          | 15:00        | 3.6                         | 147                               |  |
| 15/01/28                                                          | 16:00        | 3.6                         | 135                               |  |
| 15/01/28                                                          | 17:00        | 3.6                         | 149                               |  |
| 15/01/28                                                          | 18:00        | 3.1                         | 140                               |  |
| 15/01/28                                                          | 19:00        | 3.1                         | 118                               |  |
| 15/01/28                                                          | 20:00        | 2.2                         | 102                               |  |
| 15/01/28                                                          | 21:00        | 2.2                         | 107                               |  |
| 15/01/28                                                          | 22:00        | 2.2                         | 95                                |  |
| 15/01/28                                                          | 23:00        | 2.7                         | 124                               |  |
|                                                                   |              |                             | 94                                |  |
| 15/01/29                                                          | 0:00         | 2.2                         |                                   |  |
| 15/01/29                                                          | 1:00         | 2.7                         | 115                               |  |
| 15/01/29                                                          | 2:00         | 2.7                         | 126                               |  |
| 15/01/29                                                          | 3:00         | 2.7                         | 117                               |  |
| 15/01/29                                                          | 4:00         | 3.6                         | 128                               |  |
| 15/01/29                                                          | 5:00         | 2.2                         | 130                               |  |
| 15/01/29                                                          | 6:00         | 1.3                         | 88                                |  |
| 15/01/29                                                          | 7:00         | 1.8                         | 85                                |  |
| 15/01/29                                                          | 8:00         | 1.3                         | 92                                |  |
| 15/01/29                                                          | 9:00         | 2.2                         | 116                               |  |
| 15/01/29                                                          | 10:00        | 3.6                         | 134                               |  |
| 15/01/29                                                          | 11:00        | 3.6                         | 151                               |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                   |  |
|-------------------------------------------------------------------|--------------|-----------------------------|-----------------------------------|--|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree |  |
| 15/01/29                                                          | 12:00        | 2.7                         | 162                               |  |
| 15/01/29                                                          | 13:00        | 2.7                         | 157                               |  |
| 15/01/29                                                          | 14:00        | 1.8                         | 149                               |  |
| 15/01/29                                                          | 15:00        | 1.3                         | 144                               |  |
| 15/01/29                                                          | 16:00        | 0.9                         | 171                               |  |
| 15/01/29                                                          | 17:00        | 0.9                         | 246                               |  |
| 15/01/29                                                          | 18:00        | 0.4                         | 47                                |  |
| 15/01/29                                                          | 19:00        | 0.4                         | 72                                |  |
| 15/01/29                                                          | 20:00        | 0.4                         | 75                                |  |
| 15/01/29                                                          | 21:00        | 0.4                         | 80                                |  |
| 15/01/29                                                          | 22:00        | 0.2                         | 5                                 |  |
| 15/01/29                                                          | 23:00        | 0.1                         | 69                                |  |
| 15/01/31                                                          | 0:00         | 0.1                         | 3                                 |  |
|                                                                   | +            |                             |                                   |  |
| 15/01/31                                                          | 1:00         | 0.4                         | 11                                |  |
| 15/01/31                                                          | 2:00         | 0.4                         | 357                               |  |
| 15/01/31                                                          | 3:00         | 0.9                         | 67                                |  |
| 15/01/31                                                          | 4:00         | 0.4                         | 69                                |  |
| 15/01/31                                                          | 5:00         | 1.8                         | 71                                |  |
| 15/01/31                                                          | 6:00         | 2.2                         | 74                                |  |
| 15/01/31                                                          | 7:00         | 1.8                         | 82                                |  |
| 15/01/31                                                          | 8:00         | 2.2                         | 80                                |  |
| 15/01/31                                                          | 9:00         | 2.2                         | 74                                |  |
| 15/01/31                                                          | 10:00        | 2.2                         | 76                                |  |
| 15/01/31                                                          | 11:00        | 1.8                         | 72                                |  |
| 15/01/31                                                          | 12:00        | 1.8                         | 69                                |  |
| 15/01/31                                                          | 13:00        | 0.9                         | 67                                |  |
| 15/01/31                                                          | 14:00        | 0.9                         | 73                                |  |
| 15/01/31                                                          | 15:00        | 0.9                         | 182                               |  |
| 15/01/31                                                          | 16:00        | 1.3                         | 179                               |  |
| 15/01/31                                                          | 17:00        | 1.3                         | 166                               |  |
| 15/01/31                                                          | 18:00        | 0.4                         | 184                               |  |
| 15/01/31                                                          | 19:00        | 1.3                         | 47                                |  |
| 15/01/31                                                          | 20:00        | 0.9                         | 51                                |  |
| 15/01/31                                                          | 21:00        | 0.4                         | 46                                |  |
| 15/01/31                                                          | 22:00        | 0.9                         | 53                                |  |
| 15/01/31                                                          | 23:00        | 0.9                         | 78                                |  |
| 15/02/01                                                          | 0:00         | 0.4                         | 76                                |  |
| 15/02/01                                                          | 1:00         | 1.3                         | 71                                |  |
| 15/02/01                                                          | 2:00         | 1.8                         | 69                                |  |
|                                                                   |              |                             |                                   |  |
| 15/02/01                                                          | 3:00         | 1.8                         | 81                                |  |
| 15/02/01                                                          | 4:00         | 2.2                         | 80                                |  |
| 15/02/01                                                          | 5:00         | 2.2                         | 74                                |  |
| 15/02/01                                                          | 6:00         | 1.8                         | 88                                |  |
| 15/02/01                                                          | 7:00         | 2.2                         | 87                                |  |
| 15/02/01                                                          | 8:00         | 2.2                         | 86                                |  |
| 15/02/01                                                          | 9:00         | 2.7                         | 81                                |  |
| 15/02/01                                                          | 10:00        | 2.2                         | 79                                |  |
| 15/02/01                                                          | 11:00        | 1.8                         | 83                                |  |
| 15/02/01                                                          | 12:00        | 1.8                         | 84                                |  |
| 15/02/01                                                          | 13:00        | 0.9                         | 80                                |  |
| 15/02/01                                                          | 14:00        | 1.3                         | 181                               |  |
| 15/02/01                                                          | 15:00        | 0.9                         | 275                               |  |
| 15/02/01                                                          | 16:00        | 0.9                         | 271                               |  |
| 15/02/01                                                          | 17:00        | 0.9                         | 301                               |  |

| Meteorological Data for Impact Monitoring in the reporting period |              |                             |                                    |
|-------------------------------------------------------------------|--------------|-----------------------------|------------------------------------|
| Date (yy-mm-dd)                                                   | Time (24hrs) | Average of Wind Speed (m/s) | Average of Wind Direction (degree) |
| 15/02/01                                                          | 18:00        | 0.9                         | 354                                |
| 15/02/01                                                          | 19:00        | 0.9                         | 2                                  |
| 15/02/01                                                          | 20:00        | 0.9                         | 6                                  |
| 15/02/01                                                          | 21:00        | 0.9                         | 132                                |
| 15/02/01                                                          | 22:00        | 1.3                         | 135                                |
| 15/02/01                                                          | 23:00        | 0                           | 115                                |

## Appendix I

## Impact Water Quality Monitoring Results

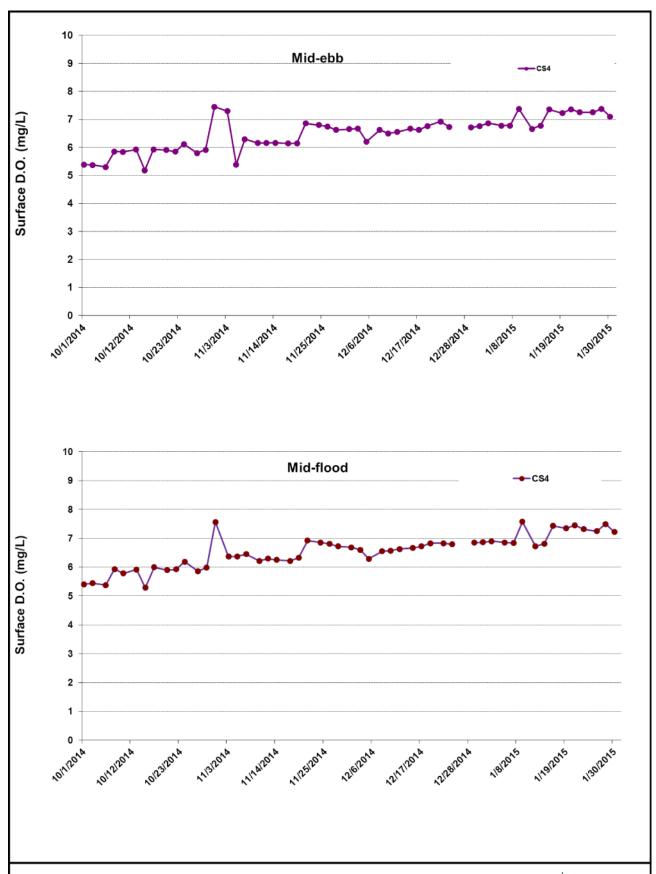



Figure I1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.

Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



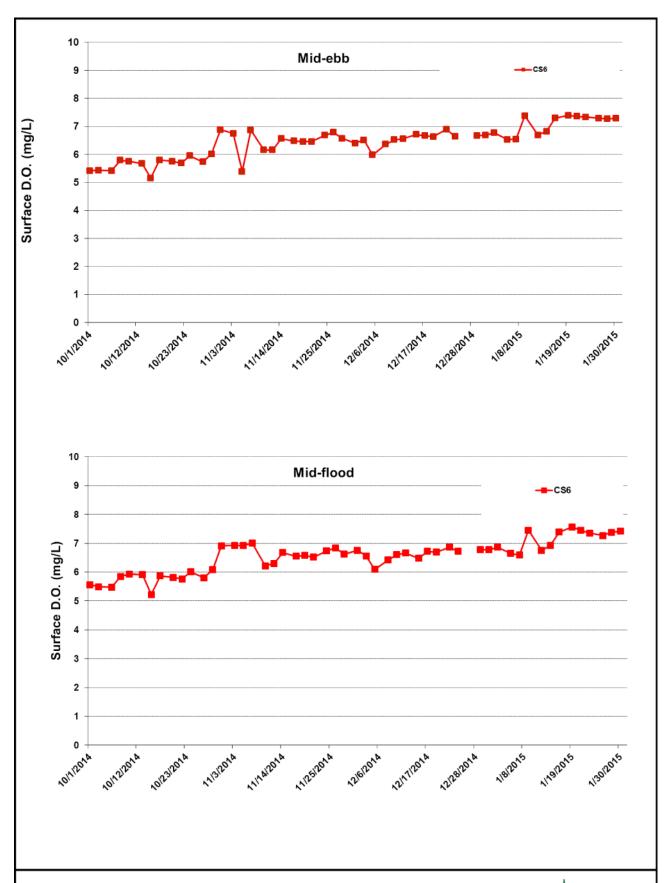



Figure I2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls





Figure I3 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



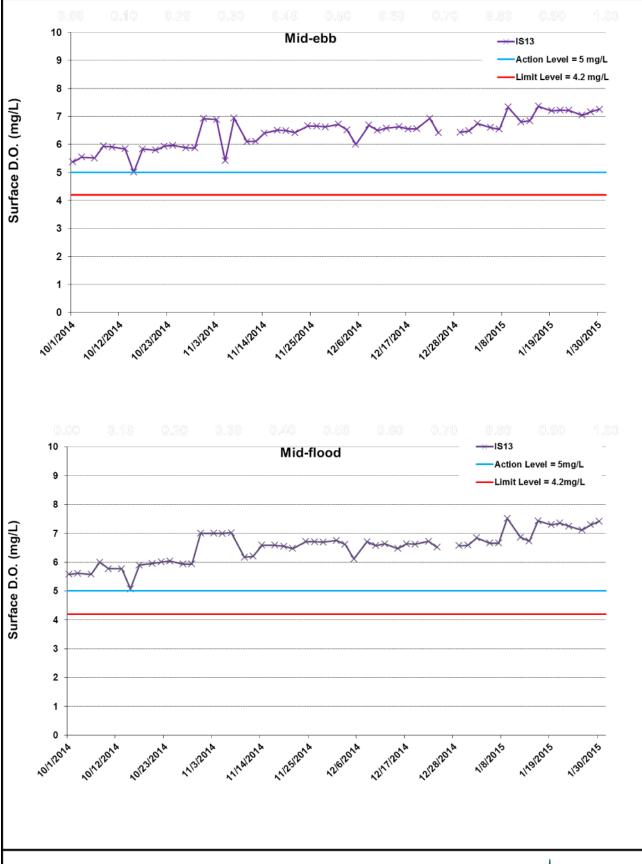



Figure I4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



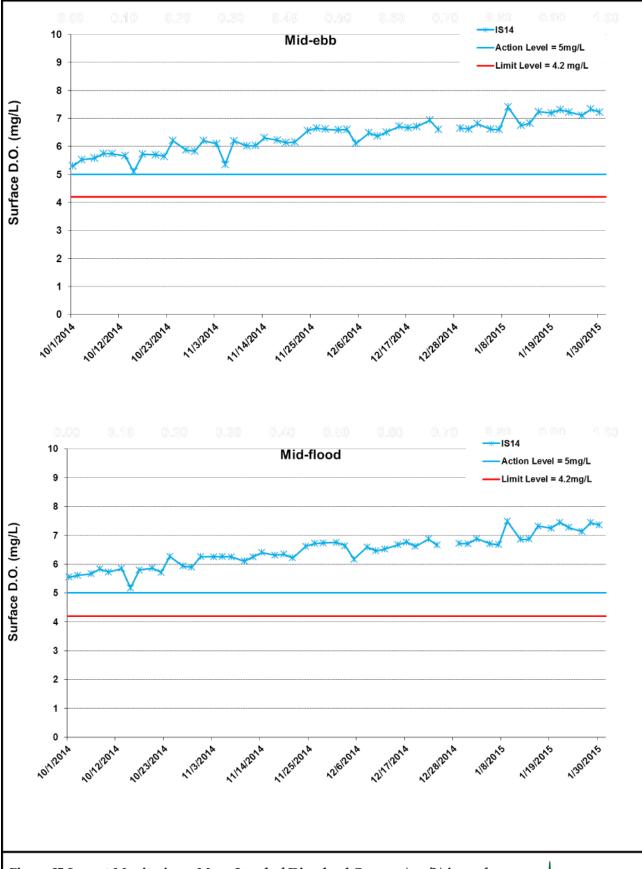



Figure I5 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



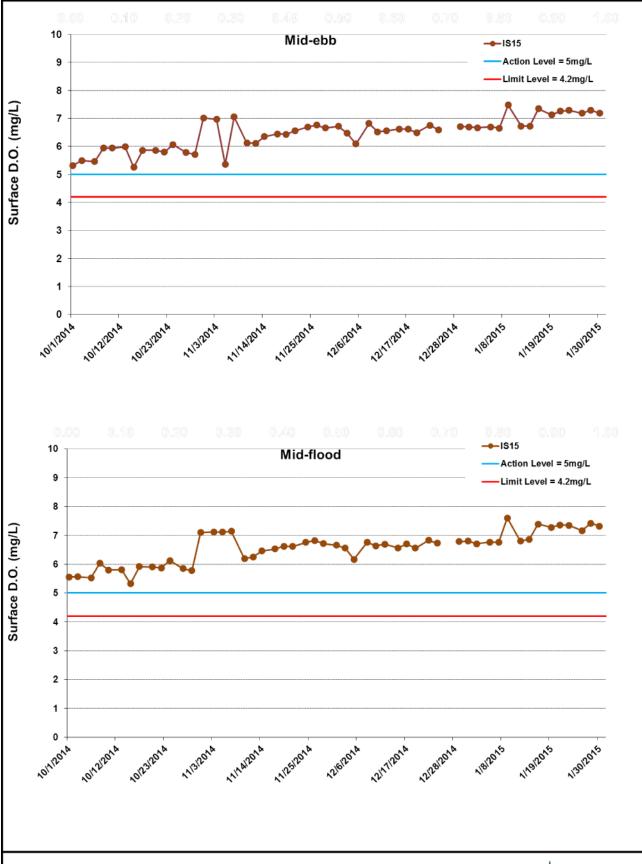



Figure I6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



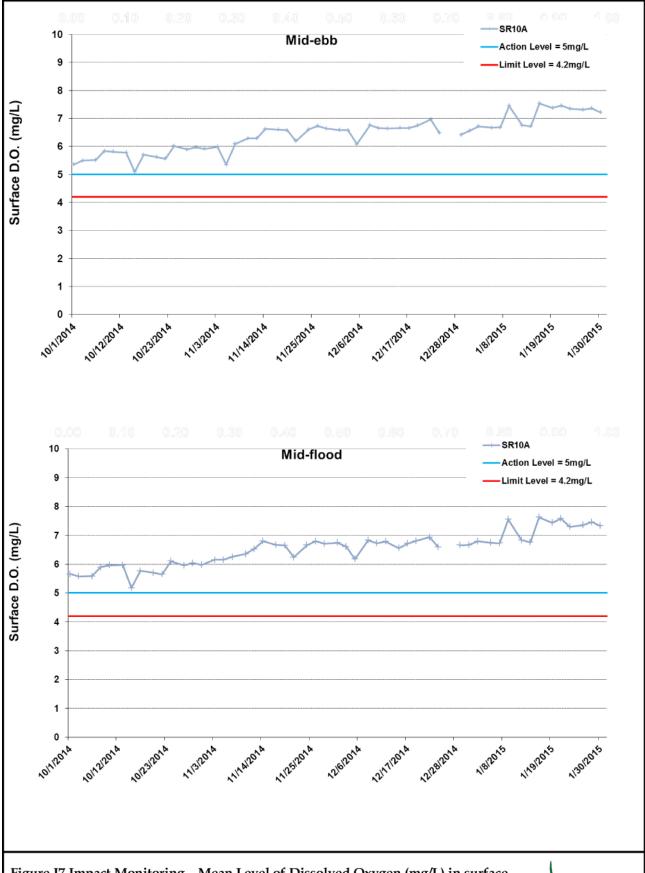



Figure I7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



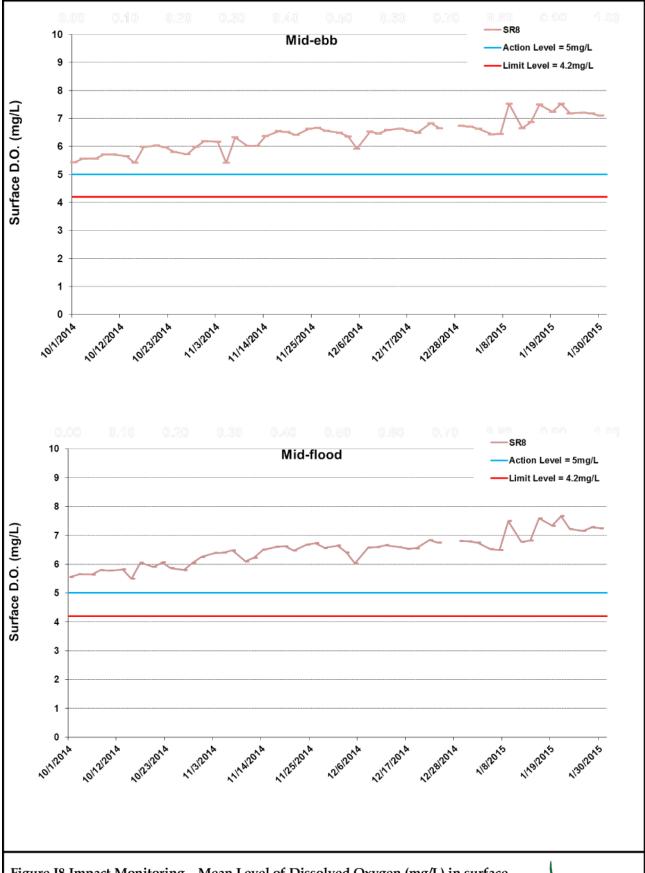



Figure I8 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



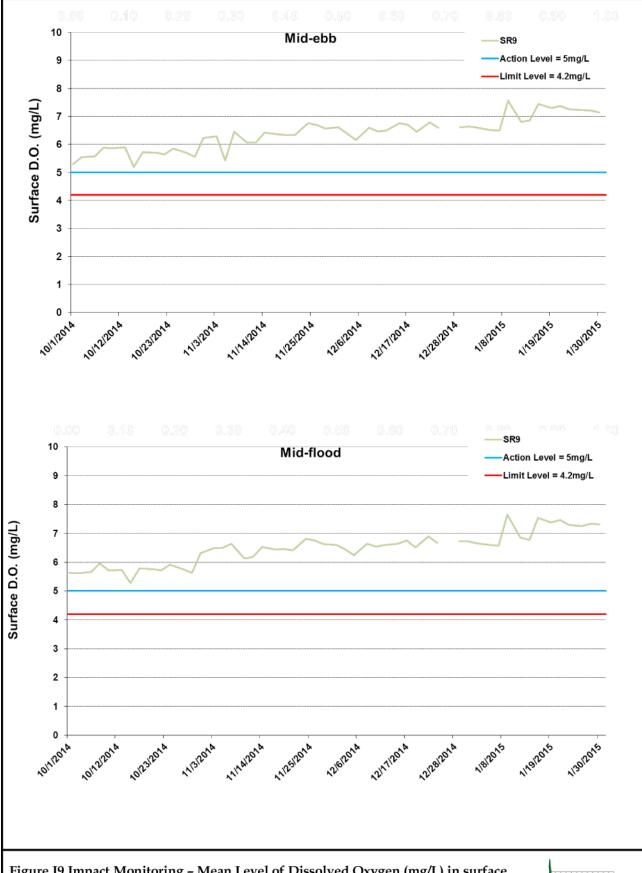



Figure I9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



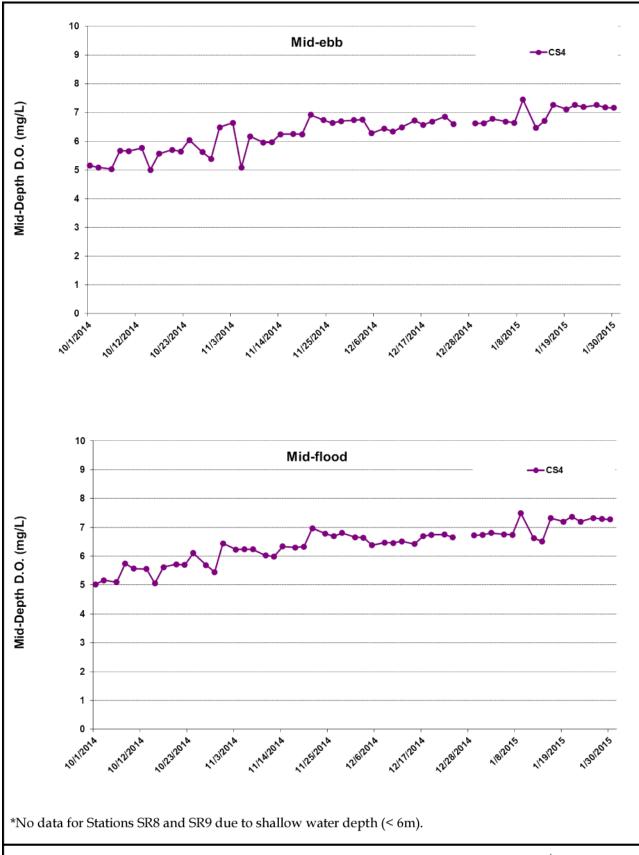



Figure I10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



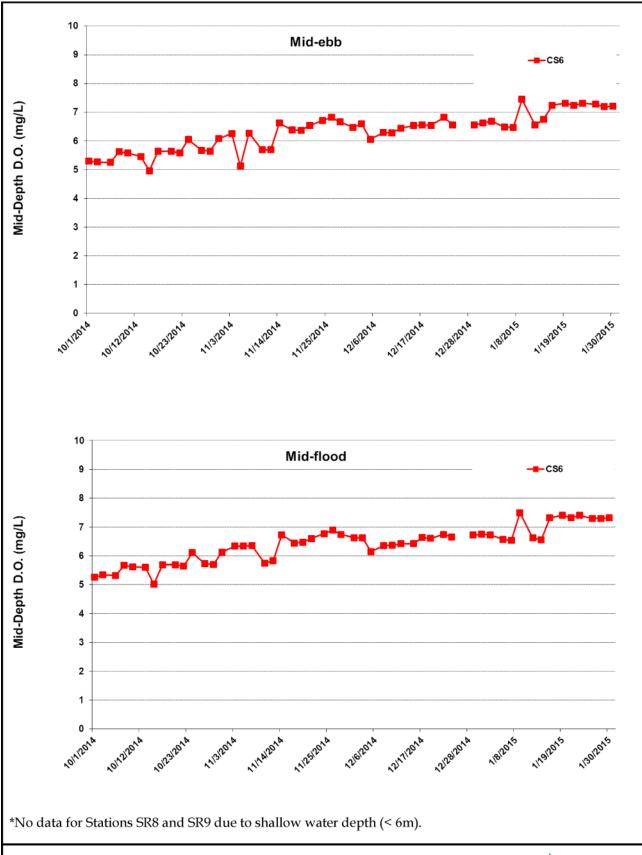



Figure I11 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



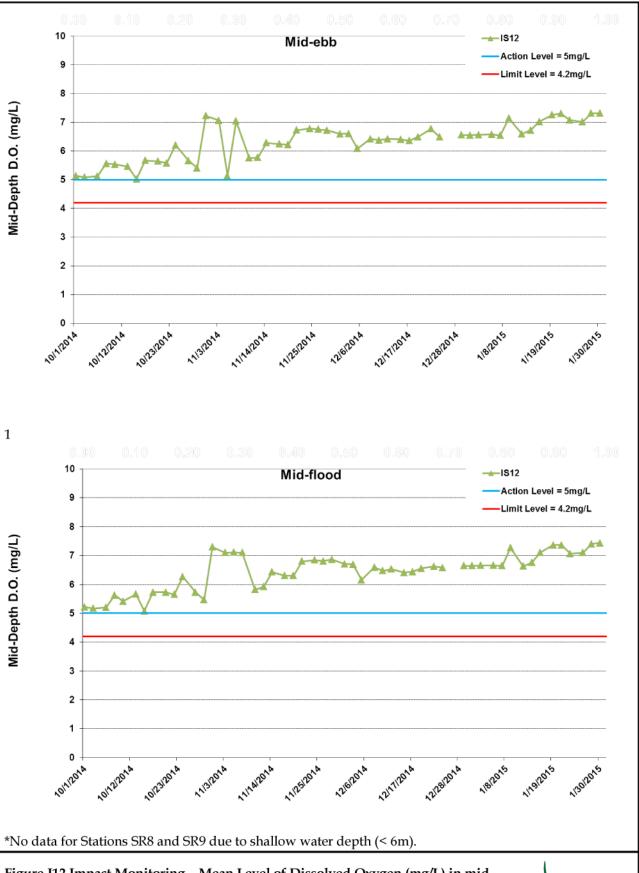



Figure I12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



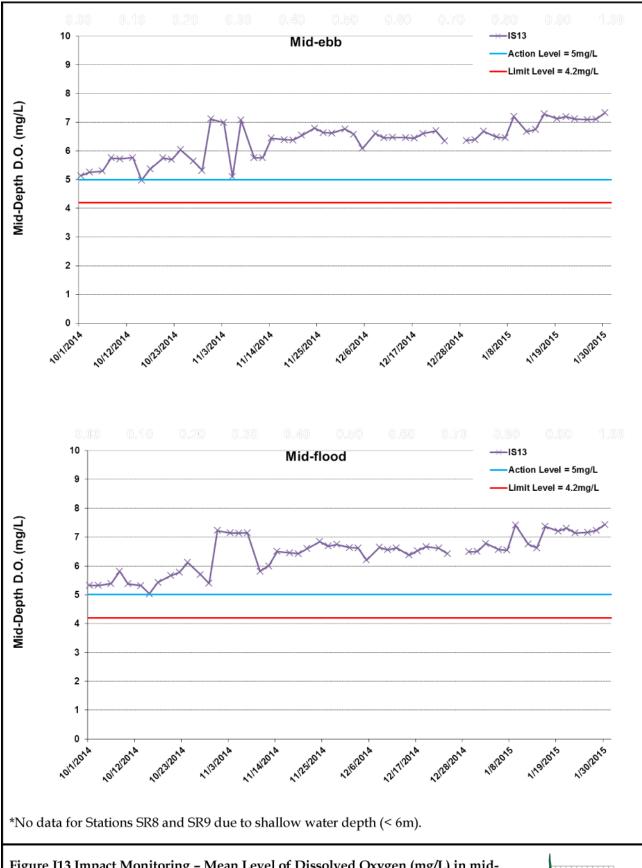



Figure I13 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



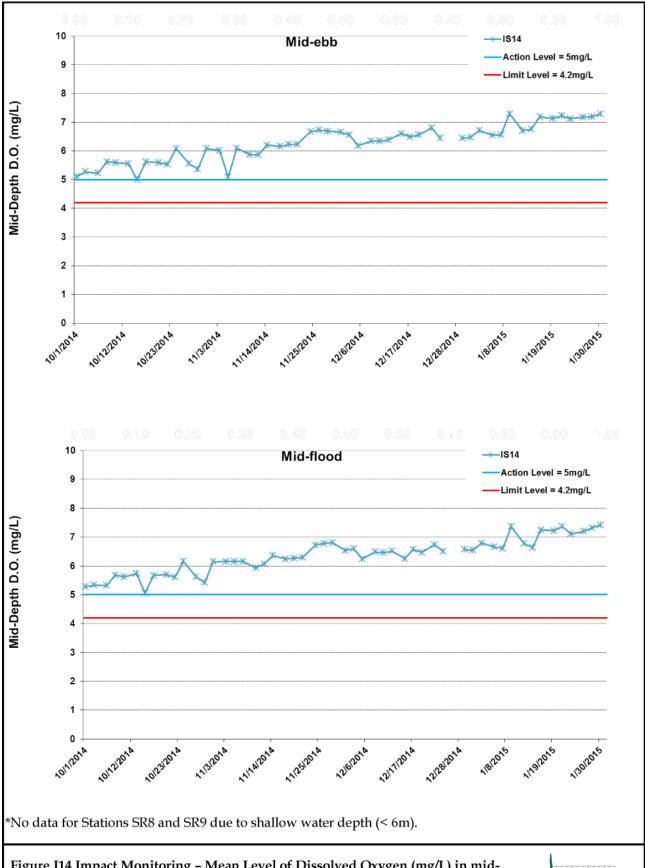



Figure I14 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



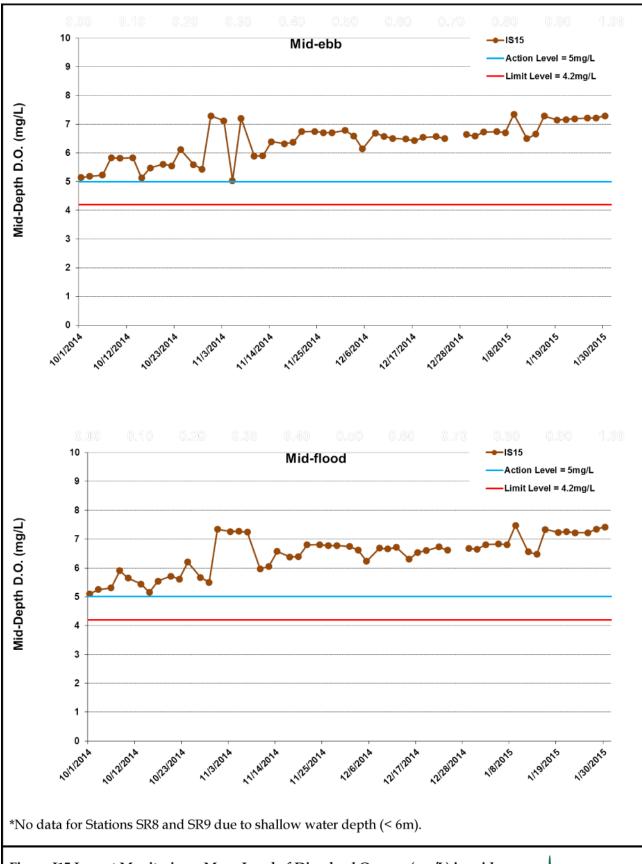



Figure I15 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



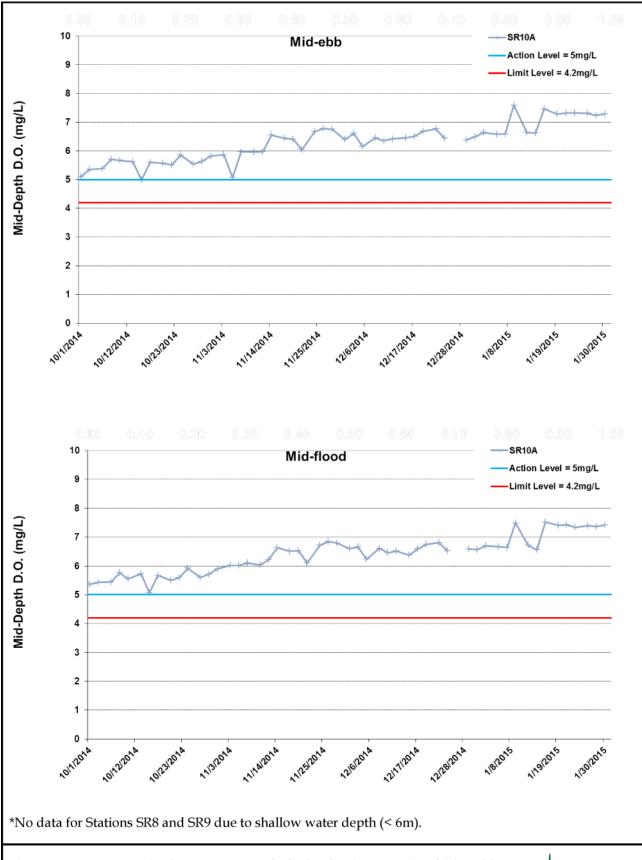



Figure I16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



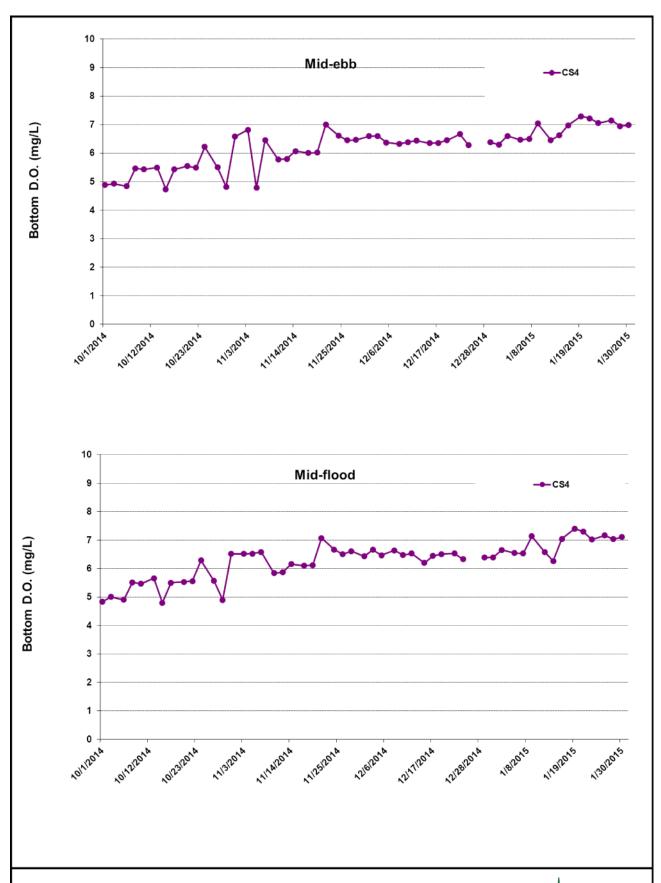



Figure I17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



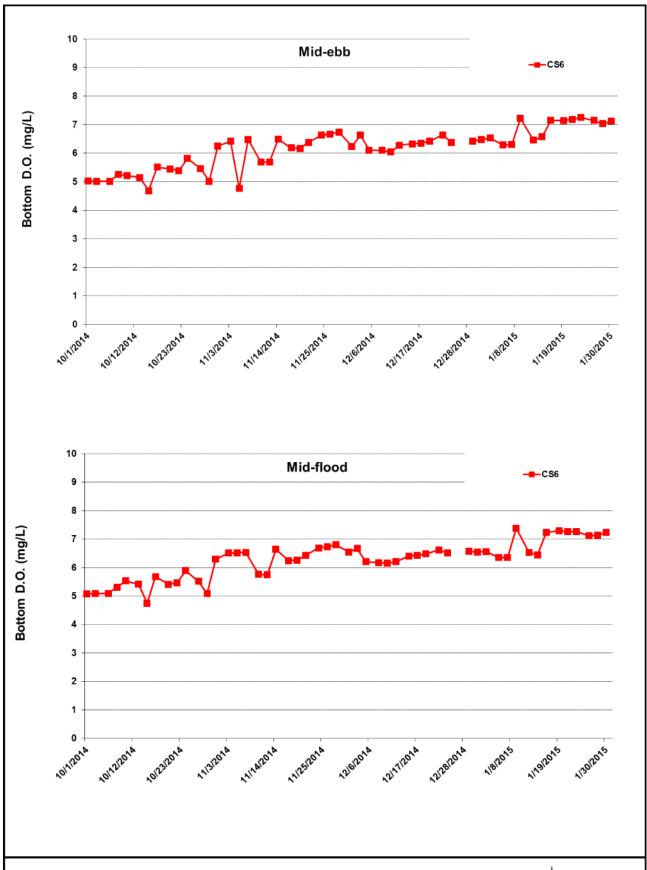



Figure I18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



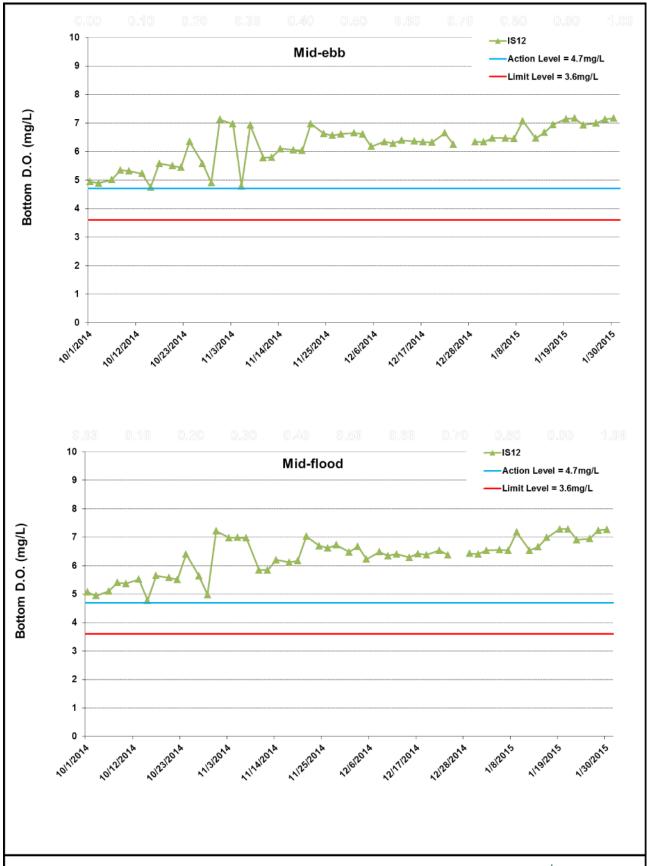



Figure I19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



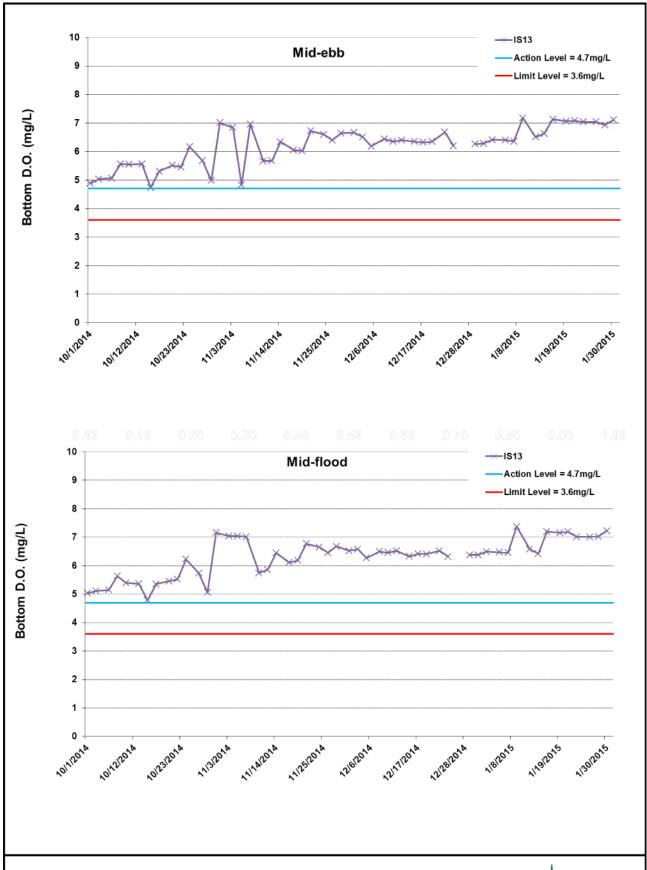



Figure I20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



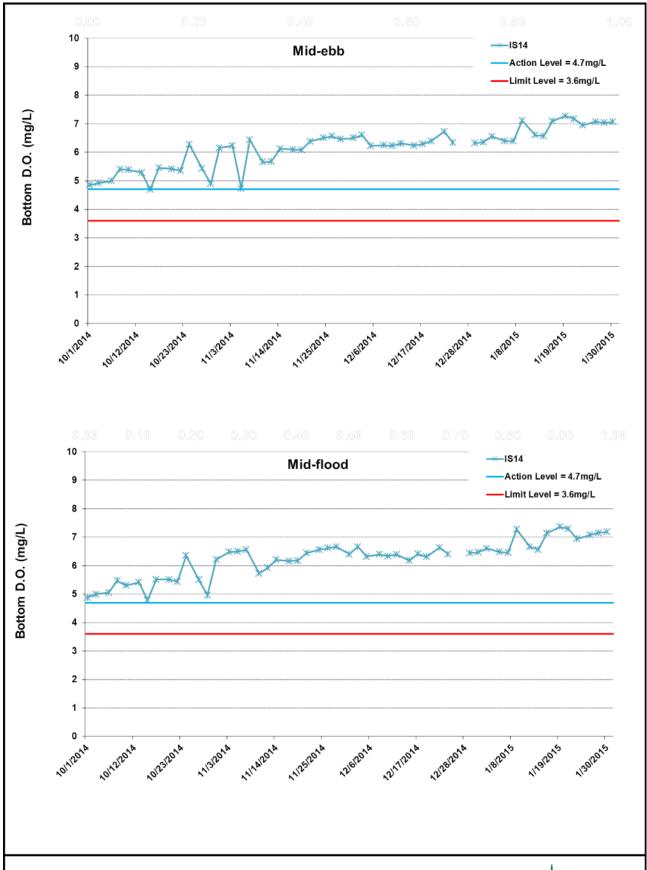



Figure I21 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



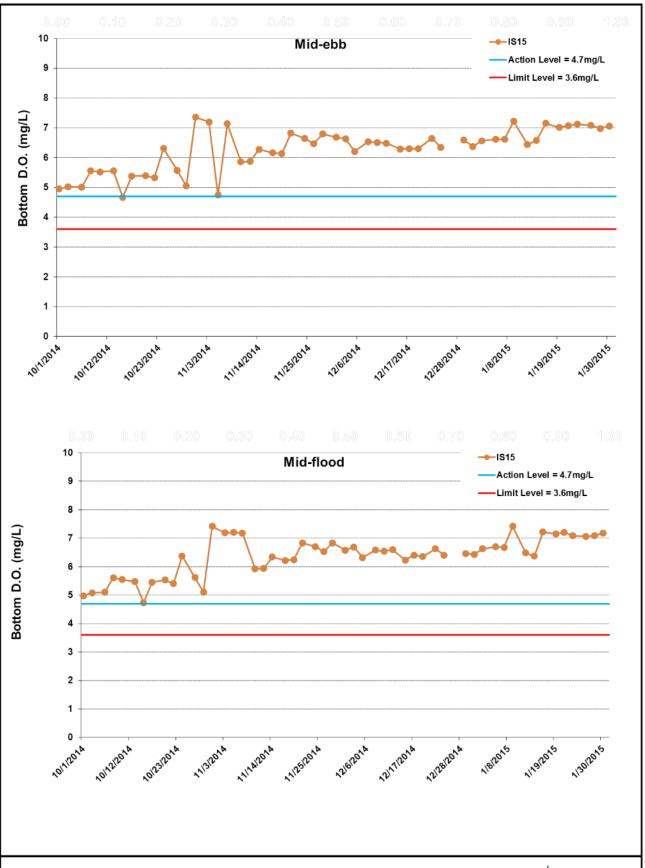



Figure I22 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



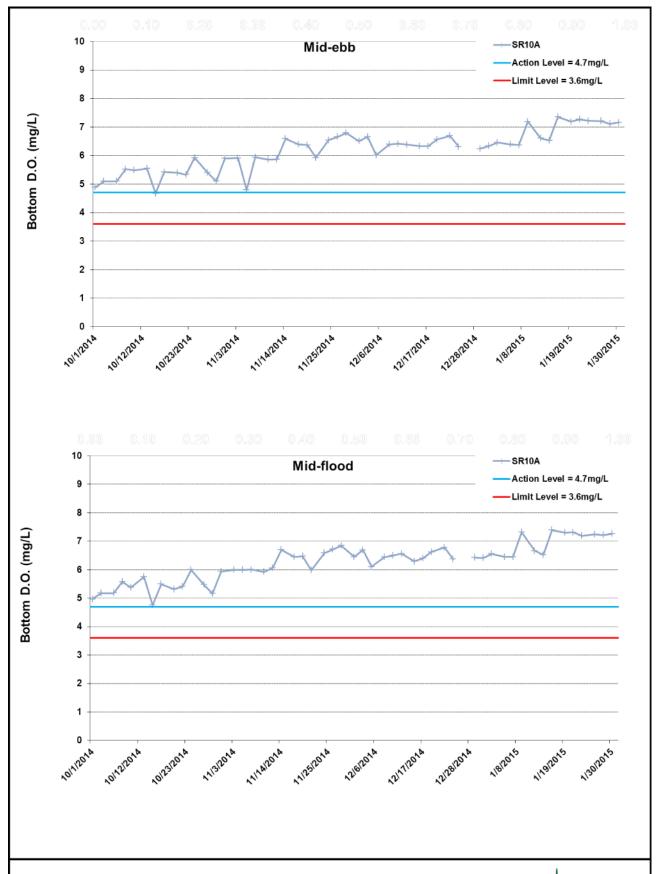



Figure I23 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



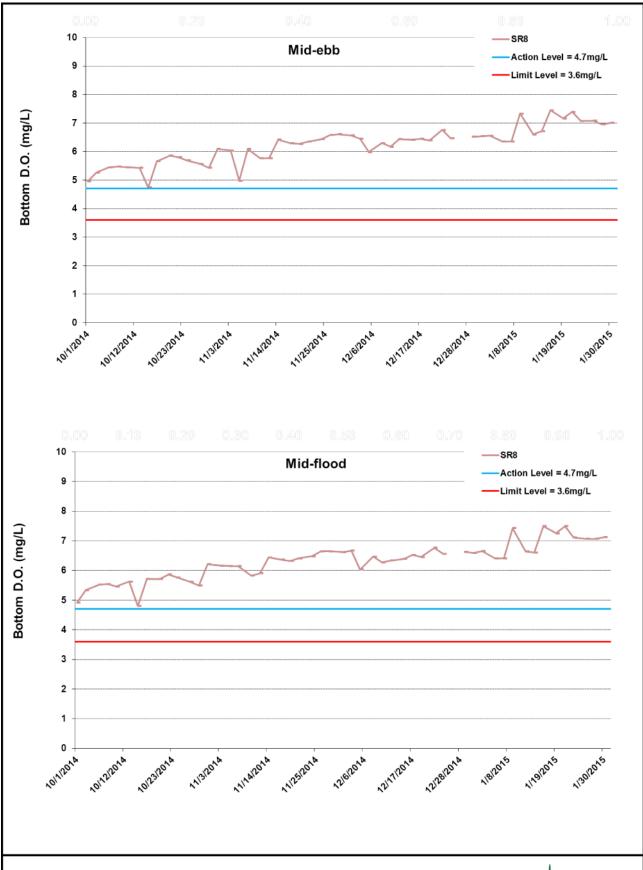



Figure I24 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



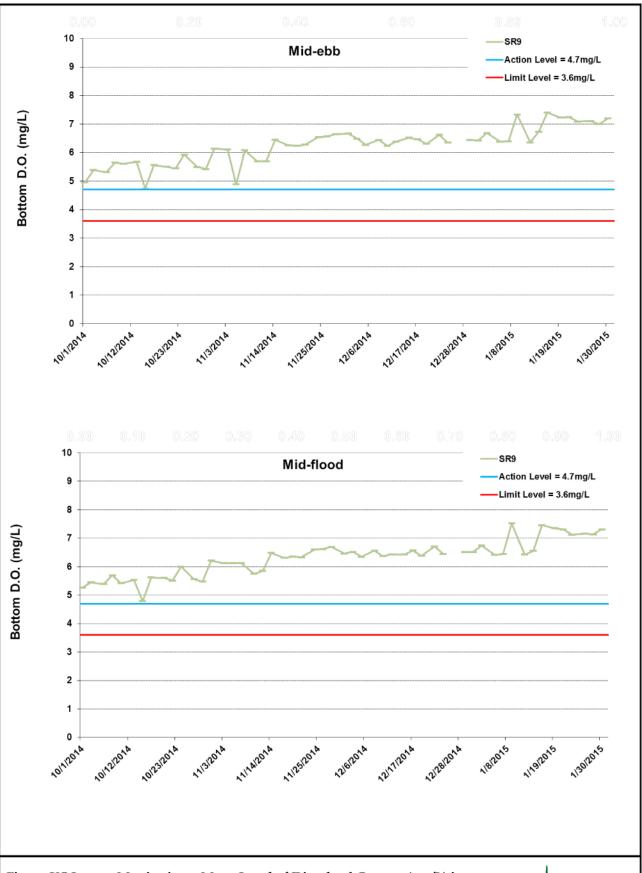



Figure I25 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014. Ref: 0212330\_Impact-WQM\_January2015\_graphs\_Rev a.xls



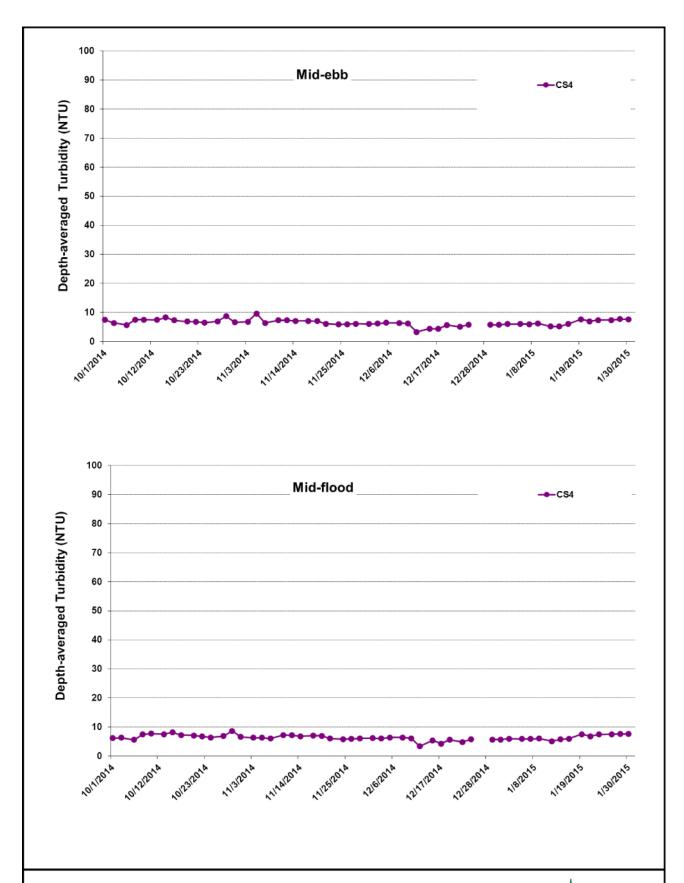



Figure I26 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



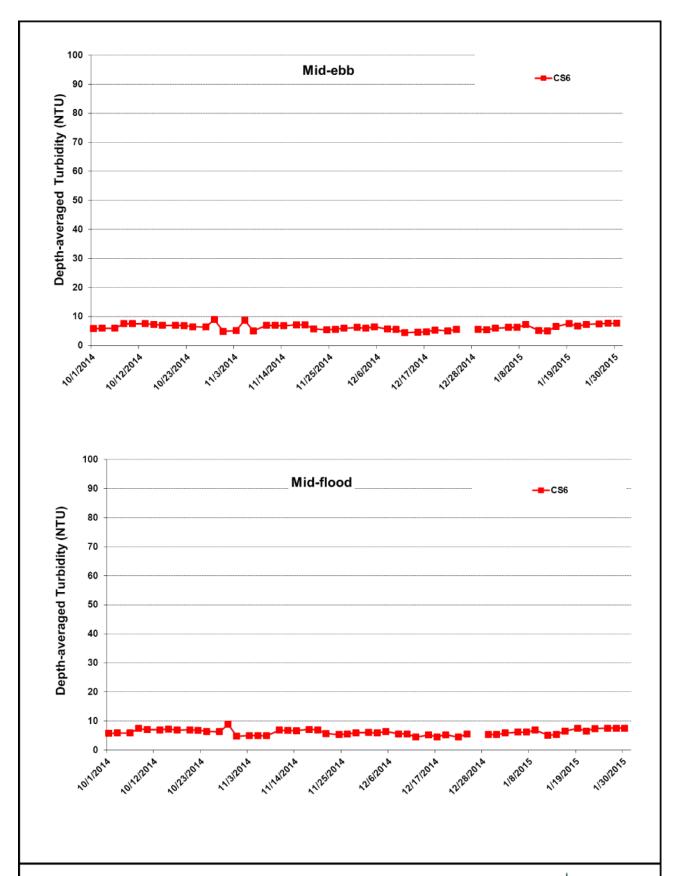



Figure I27 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



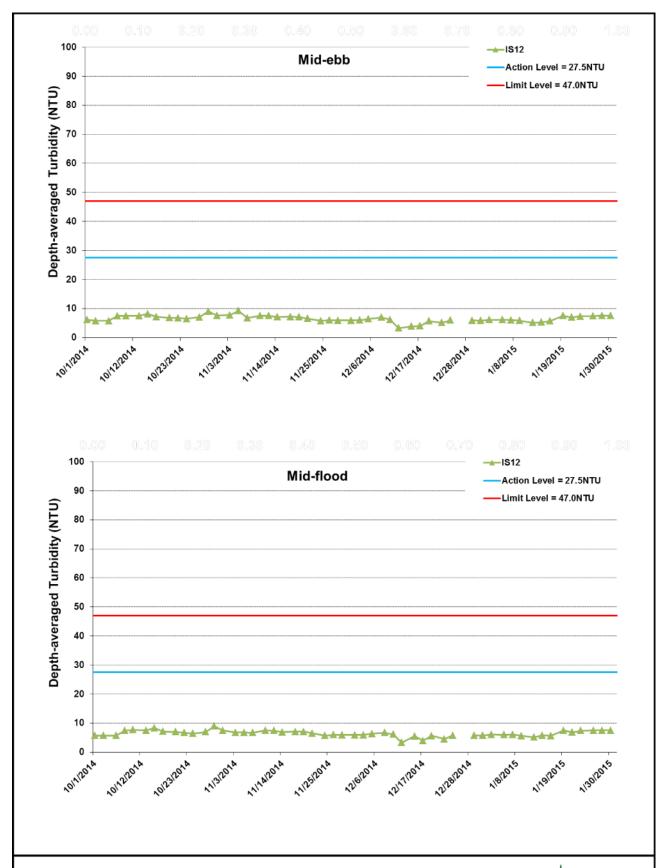



Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



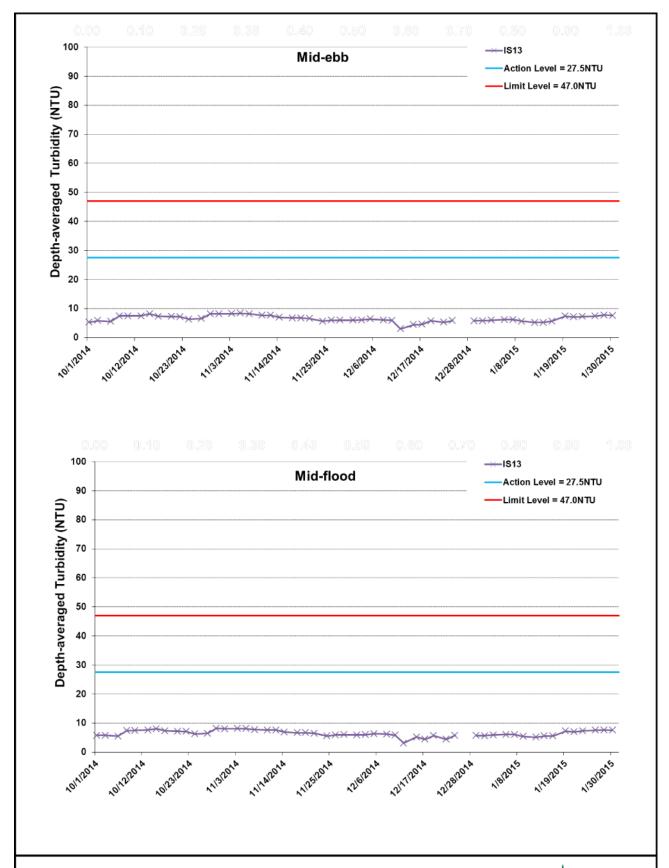



Figure I29 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



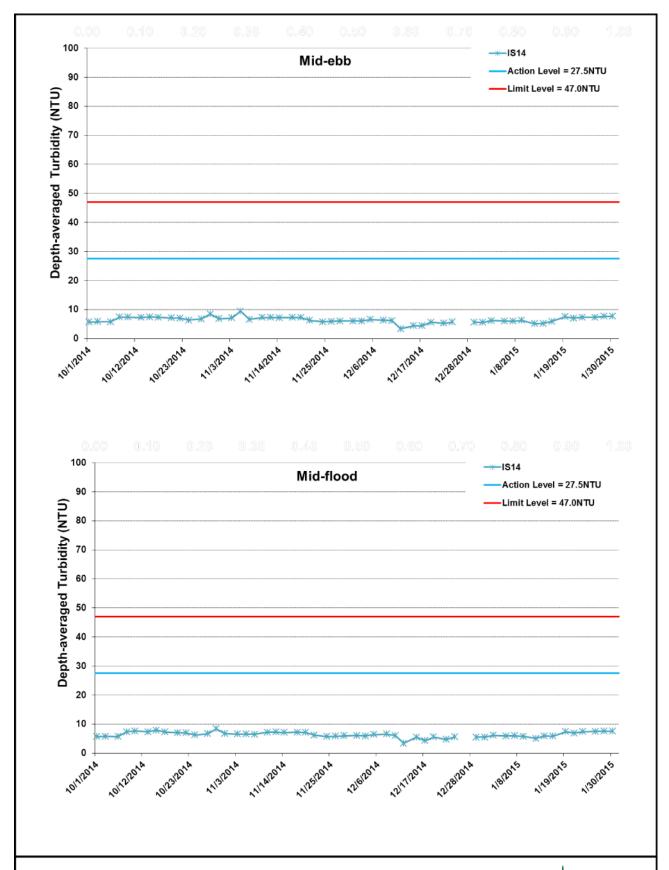



Figure I30 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



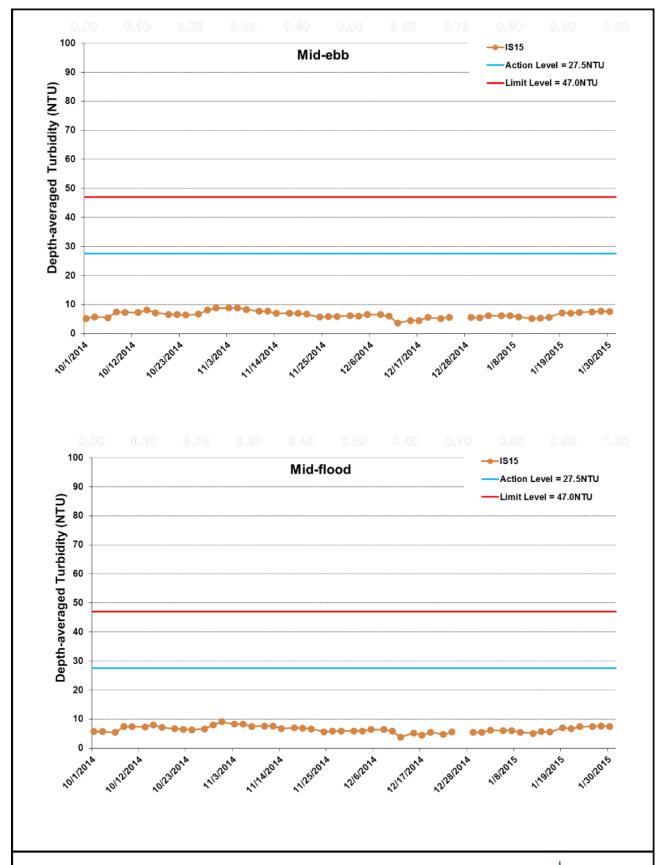



Figure I31 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



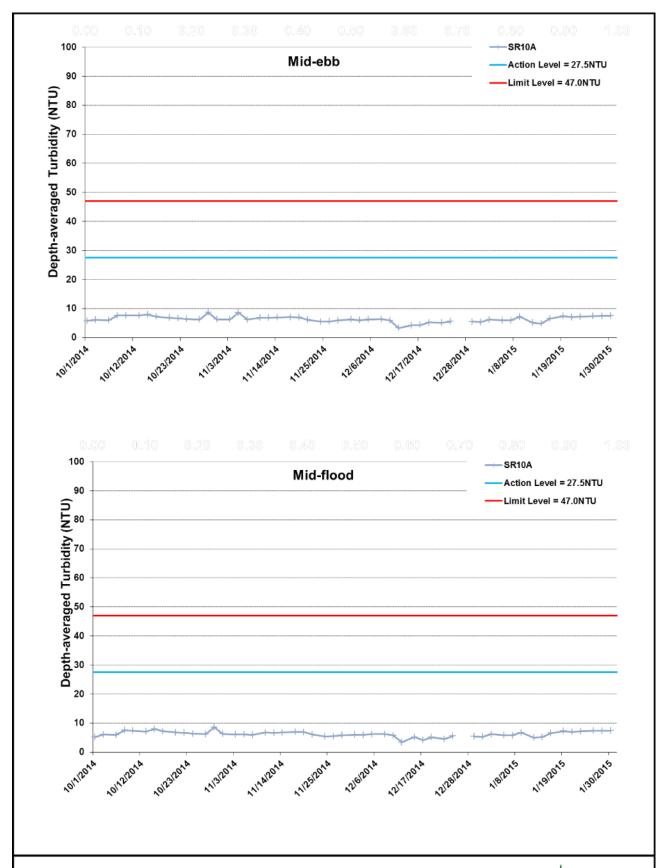



Figure I32 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 - 11/20/2014); Sheet Piling (10/1/2014 - 11/20/2014); Filling (10/1/2014 - 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.






Figure I33 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



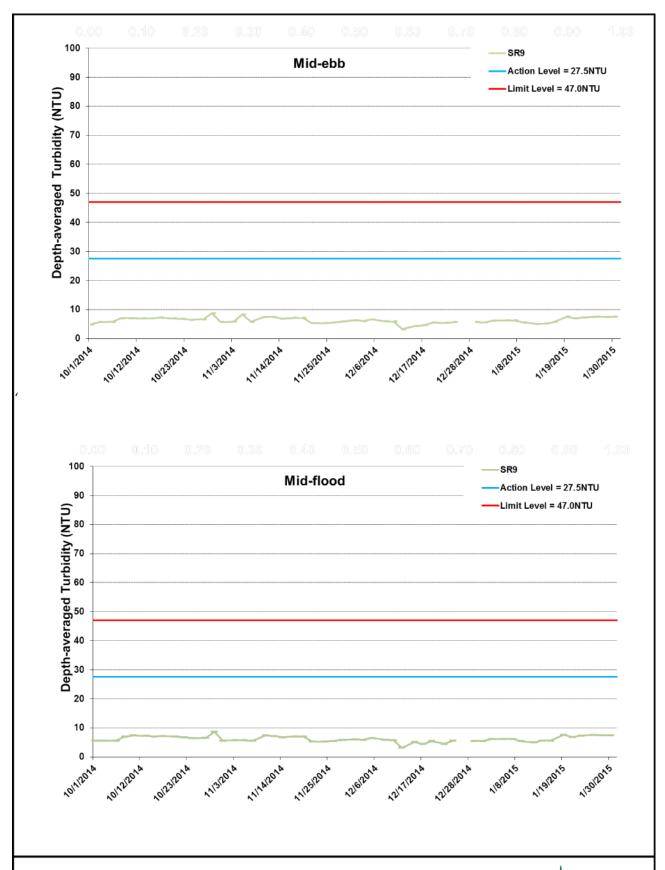



Figure I34 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



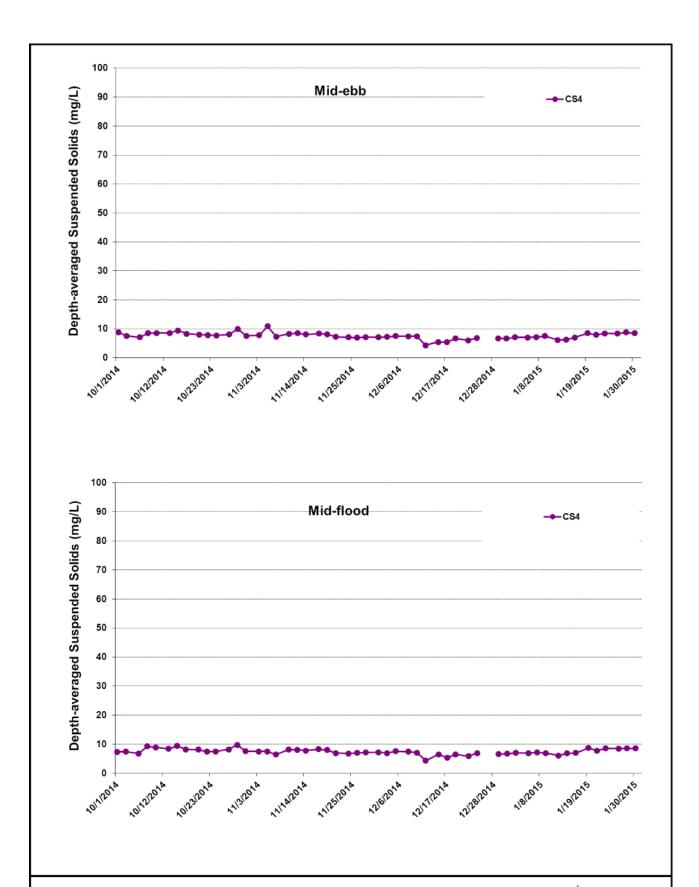



Figure I35 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



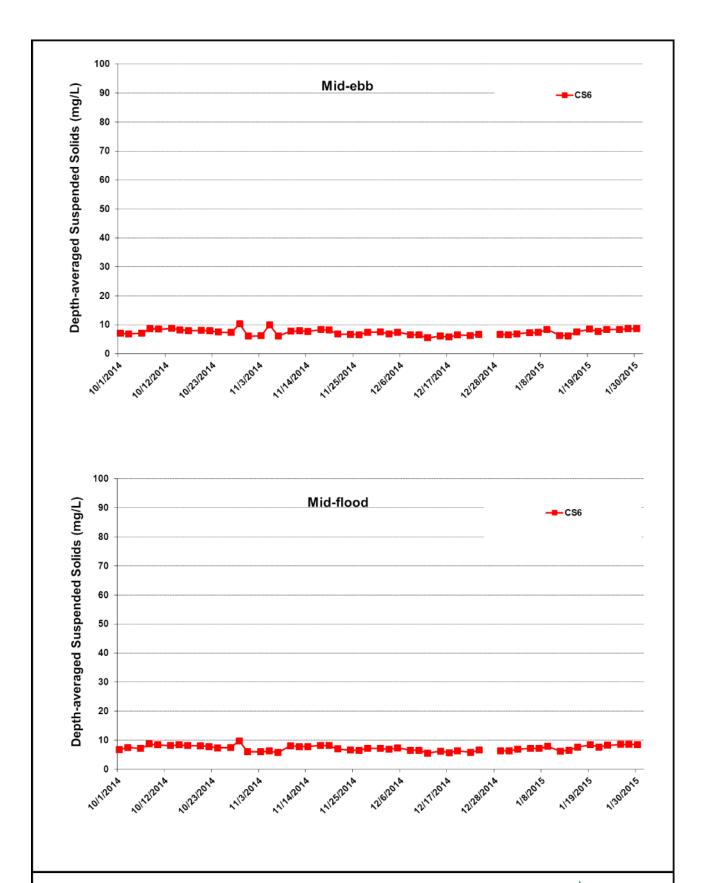



Figure I36 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



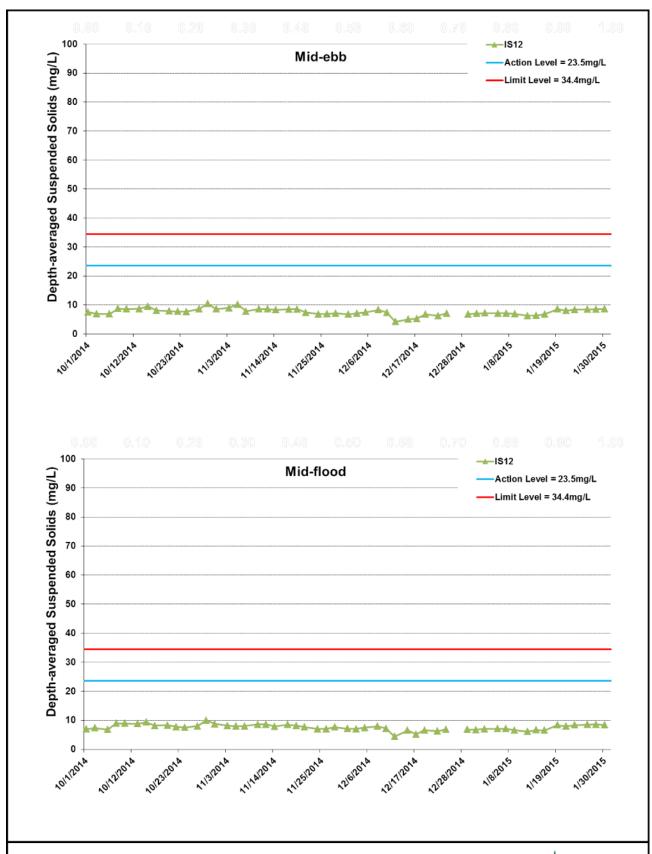



Figure I37 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.






Figure I38 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



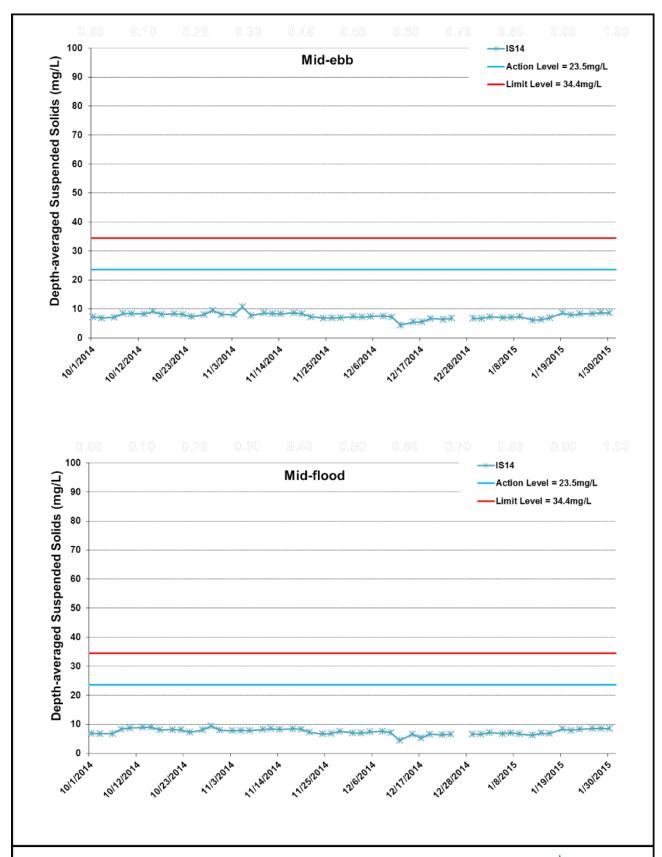



Figure I39 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



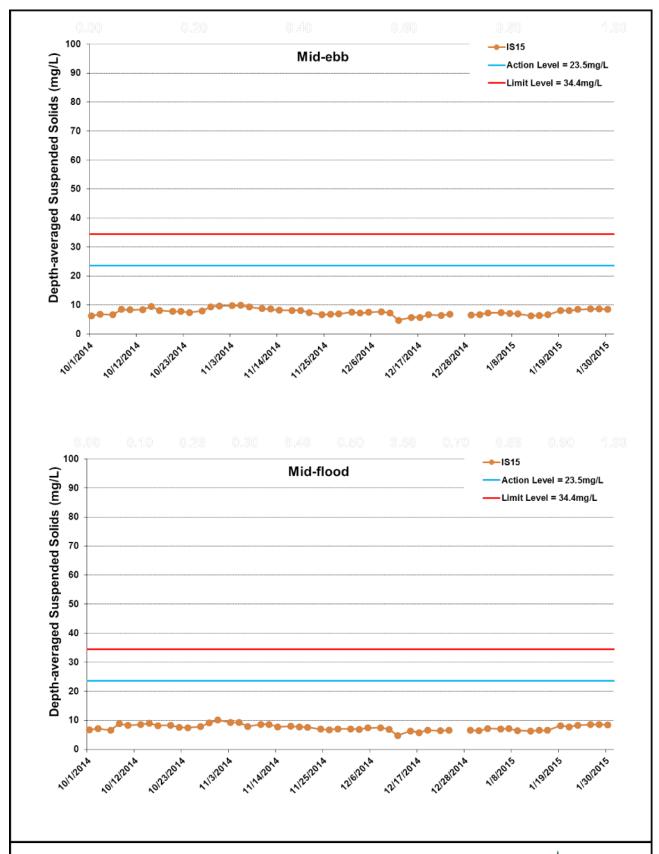



Figure I40 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



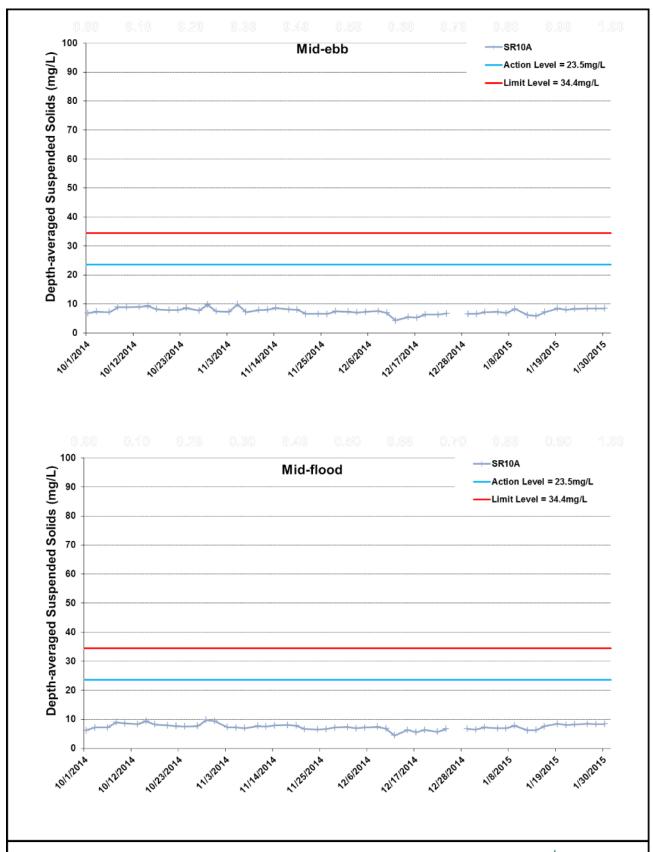



Figure I41 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



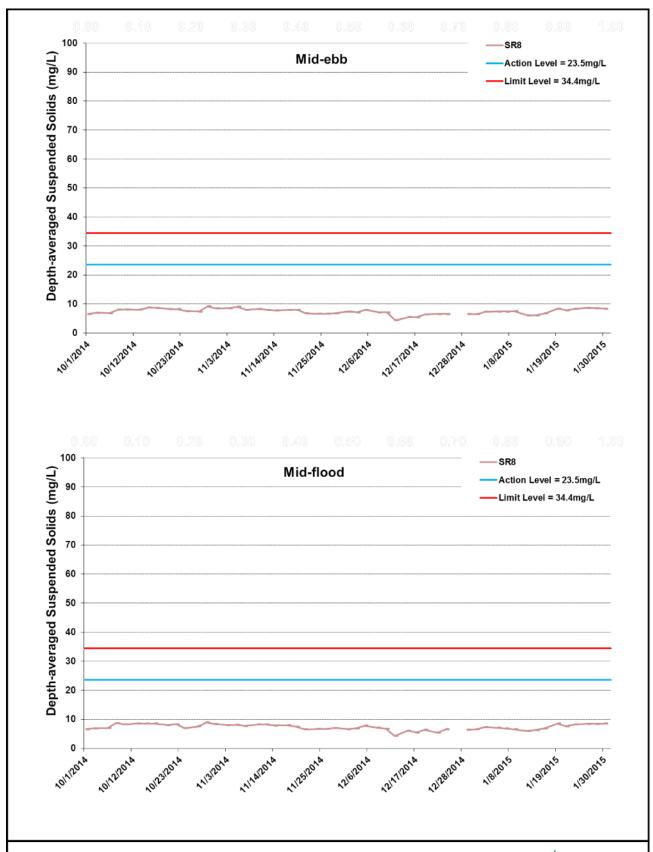



Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



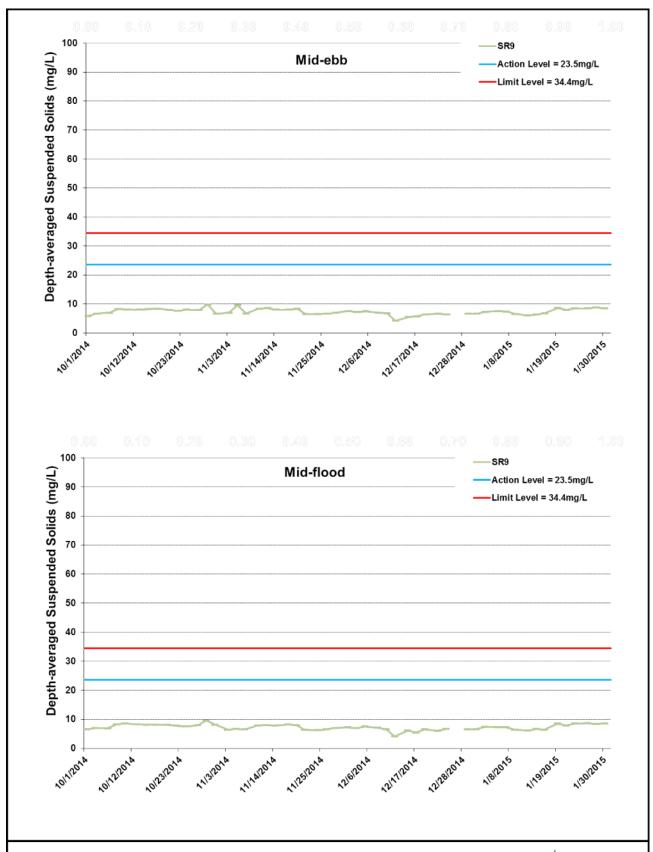



Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 1 October 2014 and 31 January 2015 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine construction activities included: Construction of Temporary Seawalls (10/1/2014 – 11/20/2014); Sheet Piling (10/1/2014 – 11/20/2014); Filling (10/1/2014 – 11/20/2014). WQM on 26 December 2014 was postponed to 29 December 2014.



| Project          | Works                    | Date       | Tide                   | Weather      | Sea<br>Condition         | Stat         | Level            | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C) | рН           | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)    |
|------------------|--------------------------|------------|------------------------|--------------|--------------------------|--------------|------------------|----------------|---------|-----------|----------------|----------|--------------|---------------|--------------|----------------|-------------|
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Surface          | 1              | 1       | 1         | 17:25          | 17.9     | 8.23         | 28.7          | 6.88         | 5.73           | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Surface          | 1              | 1       | 2         | 17:25          | 17.8     | 8.22         | 28.9          | 6.92         | 5.64           | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Middle           | 10.8           | 2       | 1         | 17:25          | 18.2     | 8.27         | 29.2          | 6.79         | 5.81           | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Middle           | 10.8           | 2       | 2         | 17:25          |          | 8.26         | 29.3          | 6.82         | 5.95           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Bottom           | 20.5           | 3       | 1         | 17:25          |          | 8.25         | 29.4          | 6.68         | 6.25           | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS4          | Bottom           | 20.5           | 3       | 2         | 17:25          |          | 8.24         | 29.3          | 6.63         | 6.21           | 7.2         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Surface          | 1              | 1       | 1         | 14:44          | -        | 8.13         | 29            | 6.84         | 5.76           | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Surface          | 1              | 1       | 2         | 14:44          |          | 8.12         |               | 6.88         | 5.84           | 6.9         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Middle           | 5.9            | 2       | 1         | 14:44          |          | 8.15         | 29.1          | 6.77         | 5.7            | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Middle           | 5.9            | 2       | 2         | 14:44          |          | 8.14         | 29.2          | 6.69         | 5.62           | 6.5         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Bottom           | 10.8           | 3       | 1         | 14:44          |          | 8.17         | 29.2          | 6.58         | 6.2            | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | CS6          | Bottom           | 10.8           | 3       | 2         | 14:44          |          | 8.18         | 29.1          | 6.55         | 6.27           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS12         | Surface          |                | 1       | 1         | 16:41          |          | 8.14         | 28.9          | 6.83         | 5.8            | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS12         | Surface          | 7.0            | 1       | 2         | 16:41          |          | 8.13         | 28.9          | 6.74         | 5.78           | /           |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-02 | Mid-Flood<br>Mid-Flood | Fine<br>Fine | Small Wave<br>Small Wave | IS12<br>IS12 | Middle<br>Middle | 7.6<br>7.6     | 2       | 10        | 16:41<br>16:41 |          | 8.16<br>8.16 | 29.2<br>29.1  | 6.63<br>6.68 | 5.92           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              |              | Small Wave               | IS12         |                  | 14.2           | 2       | 1         | 16:41          |          | _            | 29.1          |              | 6.03<br>6.24   | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine<br>Fine | Small Wave               | IS12         | Bottom<br>Bottom | 14.2           | 2       | 10        | 16:41          |          | 8.21<br>8.2  | 29.1          | 6.52<br>6.55 | 6.27           | 7.3         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS12         | Surface          | 14.2           | 1       | 1         | 16:20          | _        | 8.19         | 29.2          | 6.82         | 5.87           | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS13         | Surface          | 1              | 1       | 2         | 16:20          | -        | 8.2          | 29            | 6.86         | 5.92           | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS13         | Middle           | 5.7            | 2       | 1         | 16:20          | -        | 8.2          | 29.1          | 6.82         | 5.74           | 6.9         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS13         | Middle           | 5.7            | 2       | 2         | 16:20          |          | 8.21         | 29            | 6.73         | 5.7            | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS13         | Bottom           | 10.3           | 3       | 1         | 16:20          |          | 8.17         | 29.2          | 6.52         | 6.08           | 7.2         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS13         | Bottom           | 10.3           | 3       | 2         | 16:20          |          | 8.17         | 29.1          | 6.46         | 6.17           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS14         | Surface          | 1              | 1       | 1         | 17:06          |          | 8.18         | 28.9          | 6.92         | 5.83           | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS14         | Surface          | 1              | 1       | 2         | 17:06          |          | 8.18         | 29            | 6.84         | 5.92           | 7 1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS14         | Middle           | 8.2            | 2       | 1         | 17:06          |          | 8.21         | 29.1          | 6.77         | 6.08           | 7.1         |
| TMCLKL           | HY/2012/08               | _          | Mid-Flood              | Fine         |                          | IS14         | _                | 8.2            | 2       | 2         |                |          | 8.2          | 29            | 6.81         | 6.11           | 7.2         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS14         | Bottom           | 15.4           | 3       | 1         | 17:06          |          |              |               | 6.63         | 6.38           | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS14         | Bottom           | 15.4           | 3       | 2         | 17:06          | _        | -            |               | 6.58         | 6.3            | 7.6         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS15         | Surface          | 1              | 1       | 1         | 16:01          |          | 8.2          | 28.9          | 6.72         | 6.08           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         |                          | IS15         | Surface          | 1              | 1       | 2         | 16:01          |          | 8.21         | 28.8          | 6.69         | 6.14           | 7.2         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         |                          | IS15         | Middle           | 5.4            | 2       | 1         | 16:01          |          |              | 28.9          | 6.78         | 6.01           | 7.2         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS15         | Middle           | 5.4            | 2       | 2         | 16:01          |          | 8.24         |               | 6.83         | 5.93           | 6.9         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS15         | _                | 9.8            | 3       | 1         | 16:01          |          | -            |               | 6.63         | 6.14           | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | IS15         | Bottom           | 9.8            | 3       | 2         | 16:01          | 18.1     | 8.16         | 29.1          | 6.62         | 6.23           | 7.3         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Surface          | 1              | 1       | 1         | 15:32          | 17.9     | 8.15         | 28.8          | 6.72         | 6.18           | 7           |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Surface          | 1              | 1       | 2         | 15:32          | 18       | 8.16         | 28.9          | 6.77         | 6.14           | 7.3         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Middle           |                | 2       | 1         | 15:32          |          |              |               |              |                |             |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Middle           |                | 2       | 2         | 15:32          |          |              |               |              |                |             |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Bottom           | 5.4            | 3       | 1         | 15:32          | 18       | 8.12         | 28.9          | 6.63         | 6.33           | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR8          | Bottom           | 5.4            | 3       | 2         | 15:32          | 18.1     | 8.13         | 28.9          | 6.67         | 6.42           | 7.6         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         |                          | SR9          | Surface          | 1              | 1       | 1         | 15:44          |          |              | 28.9          | 6.68         | 6.03           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR9          | Surface          | 1              | 1       | 2         | 15:44          | 18.2     | 8.23         | 29            | 6.64         | 5.98           | 7.9         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         |                          | SR9          | Middle           |                | 2       | 1         | 15:44          |          |              | _             |              |                |             |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR9          | Middle           |                | 2       | 2         | 15:44          |          |              |               |              |                |             |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         |                          | SR9          | -                | 4.4            | 3       | 1         | 15:44          |          | -            |               | 6.71         | 6.18           | 7.4         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR9          | Bottom           | 4.4            | 3       | 2         | 15:44          |          |              |               | 6.77         | 6.26           | 7.1         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Surface          | 11             | 1       | 1         | 15:09          |          | 8.2          | 28.9          | 6.82         | 6.01           | <u> 7.1</u> |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Surface          | 1              | 1       | 2         | 15:09          |          | 8.21         | 29            | 6.76         | 6.04           | 7.3         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Middle           | 6.7            | 2       | 1         | 15:09          |          | _            |               | 6.72         | 5.92           | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Middle           | 6.7            | 2       | 2         | 15:09          |          | 8.16         |               | 6.68         | 5.87           | /           |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Bottom           | 12.4           | 3       | 1         | 15:09          |          | 8.18         |               | 6.53         | 6.48           | 7.6         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Flood              | Fine         | Small Wave               | SR10A        | Bottom           | 12.4           | 3       | 2         | 15:09          |          |              | 29.2          | 6.58         | 6.52           | 1./         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Ebb                | Fine         | Small Wave               | CS4          | Surface          | 1              | 11      | 1         | 09:47          | _        | 8.21         | 28.7          | 6.85         | 5.81           | 6.8         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Ebb                | Fine         | Small Wave               | CS4          | Surface          | 11             | 1       | 2         | 09:47          |          |              | 28.8          | 6.88         | 5.74           | 6.7         |
| TMCLKL           | HY/2012/08               | 2015-01-02 | Mid-Ebb                | Fine         |                          | CS4          | Middle           | 10.6           | 2       | 10        | 09:47          |          | 8.25         |               | 6.79         | 5.93           | 7.1         |
| INICLKL          | HY/2012/08               | 2015-01-02 | ממ⊐-טוועון             | Fine         | Small Wave               | JUS4         | Middle           | 110.6          | 2       | 2         | 09:47          | 1 ö. 1   | Jo.26        | 29.2          | 6.76         | 6.02           | 7.3         |

| Michigan    | Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat  | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|------------|-----------|---------|------------------|-------|---------|----------------|---------|-----------|-------|----------|------|---------------|--------------|----------------|----------|
| Triggle   Properties   Proper   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS4   | Bottom  | -              | 3       | 1         | 09:47 | 18.1     | 8.23 | 29.3          | 6.61         | 6.38           | 7.4      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | HY/2012/08 | 2015-01-02 |           | Fine    | Small Wave       |       | Bottom  |                | 3       | 2         | 09:47 |          | 8.24 |               | +            |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Surface | 1              | 1       | 1         | 12:10 | 17.9     | 8.12 | 28.9          | 6.79         | 5.87           | 6.8      |
| Model   Mode   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Surface | 1              | 1       | 2         | 12:10 | 17.9     | 8.11 | 28.9          | 6.75         | 5.95           | 6.7      |
| INCOLOR   Privagal 2009   2015-01-02   Mid-Each   Prime   Small Wave   CSR   Stort   CSR   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Middle  | 5.8            | 2       | 1         | 12:10 | 17.9     | 8.13 | 29            | 6.7          | 5.73           | 6.6      |
| TRICLICAL   Provide   Pr   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Middle  | 5.8            | 2       | 2         | 12:10 | 17.9     | 8.14 | 29            | 6.67         | 5.66           | 6.7      |
| TRICKER   PROPERTY     | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Bottom  | 10.6           | 3       | 1         | 12:10 | 18       | 8.16 | 29.1          | 6.55         | 6.23           | 7.2      |
| MACHEL   Vizio   1908   2015-1-102   Mod-Ebb   Fine   Small Wave   S12   Mode   7.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | CS6   | Bottom  | 10.6           | 3       | 2         | 12:10 | 18       | 8.17 | 29.1          | 6.51         | 6.31           | 7.4      |
| INCOLAGE   MYSTER     | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS12  | Surface | 1              | 1       | 1         | 10:33 | 17.8     | 8.12 | 28.8          | 6.72         | 5.86           | 6.9      |
| TRICKLK,   Prignage   Prince   Prince   Small Wave   Si2   Middle   7.5   2   2   10.33   17.9   8.16   20   6.44   6.12   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS12  | Surface | 1              | 1       | 2         | 10:33 | 17.9     | 8.13 | 29            | 6.68         | 5.92           | 7        |
| TMCLKL   PY/201208   2015-01-02   Mol-Ebb   Fine   Small Wave   812   Saturn   4   3   1   10.33   18   8.16   20   6.49   6.35   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | HY/2012/08 | 2015-01-02 |           |         |                  |       |         |                | 2       | 1         |       |          |      | 29            | <del>-</del> |                |          |
| Triggle   Property     | TMCLKL  |            | 2015-01-02 |           |         | Small Wave       |       |         | 7.5            | 2       | 2         | 10:33 | 17.9     | +    | 29            | +            |                | _        |
| TMCKUK,   PY201208   2015-01-02,   Mid-Ebb   Fine   Small Wave   S13   Surface   1   1   10:55   7:7   8.19   28.8   6.77   5.97   8.8   5.77   Mid-Ebb   Fine   Small Wave   S13   Surface   1   2   10:55   7:7   8.2   28.9   6.73   5.66   6.7   5.86   6.5   TMCKUK,   PY201208   2015-01-02   Mid-Ebb   Fine   Small Wave   S13   Middle   5.5   2   1   10:55   17:9   8.2   28.9   6.77   5.86   6.5   5.75   Middle   Fine   Small Wave   S13   Middle   5.5   2   1   10:55   17:9   8.2   28.9   6.77   5.86   6.5   5.75   Middle   Fine   Small Wave   S13   Middle   5.5   2   1   10:55   17:9   8.2   28.9   6.77   5.86   6.5   Middle   Fine   Small Wave   S13   Middle   5.5   2   1   10:55   17:9   8.2   28.9   6.77   5.86   6.5   Middle   Fine   Small Wave   S13   Middle   5.5   2   1   10:55   17:9   8.2   28.9   6.77   5.86   6.5   Middle   Fine   Small Wave   S13   Middle   Fine   Small Wave   S14   Middle   Fine   Fine   Fine   Fine   Small Wave   S14   Middle   Fine   Fine   Fine   Small Wave   S14   Middle   Fine   Fine   Fine   Small Wave   S14   Middle   Fine   Fine   Fine   Fine   Small Wave   S14   Middle   Fine   F   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS12  | Bottom  | 14             | 3       | 1         | 10:33 | 18       | 8.18 |               | 6.49         |                |          |
| TACKER   MY-201208   2015-01-02   Mol-Ebb   Fine   Small Wave   S13   Surface   1   2   10-55   17-8   0.19   28-9   6.73   0.05   6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TMCLKL  |            | 2015-01-02 |           |         | Small Wave       |       | Bottom  | 14             | 3       | 2         | 10:33 |          |      |               |              |                |          |
| Tright   My201208   2015-01-02   Mid-Fibb   Fine   Small Wave   IS13   Model   5.5   2   1   1055   17.9   8.2   28.9   6.7   5.85   6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TMCLKL  | HY/2012/08 |            | Mid-Ebb   | Fine    | Small Wave       |       |         | 1              | 1       | 1         | 10:55 | 17.9     | 8.18 |               |              | 5.97           |          |
| Trickling   My201208   2015-01-02   Mod-Ebb   Fine   Small Wave   IS13   Models   5.5   2   2   10.55   17.9   8.2   20   6.67   5.78   6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS13  | Surface | 1              | 1       | 2         | 10:55 | 17.8     | 8.19 |               | 6.73         |                |          |
| MINCHE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       |       |         | 5.5            | 2       | 1         | 10:55 | 17.9     |      | 28.9          | 6.7          | 5.85           | 6.5      |
| MICKLK   MYZ01208   2015-01-02   Mid-Ebb   Fine   Small Wave   IS13   Bottom   10   3   2   10.55   18   8.17   29.1   6.4   6.21   7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |            |           |         |                  |       |         | 5.5            | 2       | 2         | +     | 17.9     |      |               |              |                |          |
| MCKLK, HY/201208   2015-01-02   Mid-Ebb   Fine   Small Wave   S14   Surface   1   1   1   10-10   17.8   8.17   28.8   6.83   5.94   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS13  | Bottom  | 10             | 3       | 1         | 10:55 | 18       | 8.16 | 29.1          | 6.43         | 6.12           | 7.1      |
| MCKLK   HY/201208   2015 01 02   MG Ebb   Fine   Small Wave   S14   Model   8.1   2   1   1010   17.9   8.18   28.8   6.79   6.13   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 |           |         | Small Wave       |       | Bottom  | 10             | 3       | 2         | 10:55 | 18       | _    |               | <b>.</b>     |                | 7.3      |
| TACLIK.   HY201208   2015-01-02   Mol-Ebb   Fine   Small Wave   S14   Middle   8.1   2   1   10.10   17.9   8.19   88.9   6.73   6.13   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Surface | 1              | 1       | 1         | 10:10 | 17.8     | 8.17 | 28.8          | 6.83         | 5.94           | 7        |
| Trickie   Pry201208   2015-01-02   Mid-Ebb   Fine   Small Wave   S14   Middle   8.1   2   2   10:10   17.9   8.2   29   6.7   6.19   7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Surface | 1              | 1       | 2         | 10:10 | 17.8     | 8.18 | 28.8          | 6.79         | 6.01           | 6.8      |
| TMCLKL   H7/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   IS14   Bottom   15.2   3   1   10:10   18   8.21   29.1   6.57   6.44   7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Middle  | 8.1            | 2       | 1         | 10:10 | 17.9     | 8.19 | 28.9          | 6.73         | 6.13           | 7.2      |
| TMCLKL   HY201208   2015-01-02   Mid-Ebb   Fine   Small Wave   IS15   Surface   1   1   1   11:14   18   8.19   28.8   6.68   6.13   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Middle  | 8.1            | 2       | 2         | 10:10 | 17.9     | 8.2  | 29            | 6.7          | 6.19           | 7.3      |
| TMCLKL   HY20120B   2015-01-02   Mid-Ebb   Fine   Small Wave   IS15   Surface   1   1   1114   18   8.19   28.8   6.88   6.13   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Bottom  | 15.2           | 3       | 1         | 10:10 | 18       | 8.21 | 29.1          | 6.57         | 6.44           | 7.6      |
| TMCLKL   HY201208   2015-01-02   Mid-Ebb   Fine   Small Wave   S15   Surface   1   2   11:14   17.9   8.2   28.8   6.66   6.19   7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS14  | Bottom  | 15.2           | 3       | 2         | 10:10 | 18.1     | 8.22 | 29.2          | 6.54         | 6.38           | 7.5      |
| TMCLKL   HY201208   2015-01-02   Mid-Ebb   Fine   Small Wave   B15   Model   S.3   2   1   11:14   18   8.21   28.9   6.72   6.04   7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Surface | 1              | 1       | 1         | 11:14 | 18       | 8.19 | 28.8          | 6.68         | 6.13           | 7.2      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   IS15   Middle   5.3   2   2   11:14   18   8.22   28.9   6.74   6   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Surface | 1              | 1       | 2         | 11:14 | 17.9     | 8.2  | 28.8          | 6.65         | 6.19           | 7.3      |
| TMCLK   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   S15   Softom   9.6   3   1   11:14   18.1   8.15   29   6.58   6.25   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Middle  | 5.3            | 2       | 1         | 11:14 | 18       | 8.21 | 28.9          | 6.72         | 6.04           | 7.1      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   S15   Soltom   9.6   3   2   11:14   19.1   8.16   29.1   6.55   6.32   7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Middle  | 5.3            | 2       | 2         | 11:14 | 18       | 8.22 | 28.9          | 6.74         | 6              | 7        |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR8   Surface   1   1   11:52   17.8   8.14   28.7   6.65   6.22   7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Bottom  | 9.6            | 3       | 1         | 11:14 | 18.1     | 8.15 | 29            | 6.58         | 6.25           | 7.4      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR8   Middle   Line   Line   Small Wave   SR8   Middle   Line   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | IS15  | Bottom  | 9.6            | 3       | 2         | 11:14 | 18.1     | 8.16 | 29.1          | 6.55         | 6.32           | 7.5      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR8   Middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Surface | 1              | 1       | 1         | 11:52 | 17.8     | 8.14 | 28.7          | 6.65         | 6.22           | 7.3      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR8   Bottom   4.2   3   1   11:52   17:9   8.11   28:9   6.54   6.42   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Surface | 1              | 1       | 2         | 11:52 | 17.9     | 8.15 | 28.8          | 6.61         | 6.16           | 7        |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR8   Bottom   4.2   3   1   11:52   17:9   8.12   28.8   6.57   6.42   7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Middle  |                | 2       | 1         | 11:52 |          |      |               |              |                |          |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR9   Surface   1   1   11:34   18   8.21   28.9   6.64   6.49   7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Middle  |                | 2       | 2         | 11:52 |          |      |               |              |                |          |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR9   Surface   1   1   1   11:34   18   8.21   28.9   6.62   6.05   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Bottom  | 4.2            | 3       | 1         | 11:52 | 17.9     | 8.12 | 28.8          | 6.57         | 6.42           | 7.4      |
| TMCLKL   HY/2012/08   2015-01-02   Mid-Ebb   Fine   Small Wave   SR9   Middle   2   11:34   18   8.22   28.9   6.59   6.09   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR8   | Bottom  | 4.2            | 3       | 2         | 11:52 | 17.9     | 8.11 | 28.9          | 6.54         | 6.49           | 7.6      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Middle         2         1         11:34         C         C         C         C         C           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Middle         2         2         11:34         I         C         6.67         6.21         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Bottom         4.4         3         1         11:34         18         8.24         28.9         6.67         6.21         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         1:2:35         17.9         8.19         28.8         6.7         6.11         7.1           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         1:2:35         17.9         8.19         28.9         6.7         6.11         7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Surface | 1              | 1       | 1         | 11:34 | 18       | 8.21 | 28.9          | 6.62         | 6.05           | 7        |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Middle         2         2         11:34         I         L         E         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         D         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Surface | 1              | 1       | 2         | 11:34 | 18       | 8.22 | 28.9          | 6.59         | 6.09           | 7.2      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Bottom         4.4         3         1         11:34         18         8.24         28.9         6.67         6.21         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         1:34         18         8.24         28.9         6.7         6.27         7.3           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         1:2:35         17.9         8.19         28.8         6.7         6.11         7.1           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         1:2:35         17.9         8.14         28.9         6.6         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         1:2:35         17.9         8.14         28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Middle  |                | 2       | 1         | 11:34 |          |      |               |              |                |          |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Bottom         4.4         3         2         11:34         18         8.25         28.9         6.7         6.27         7.3           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         12:35         17.9         8.19         28.8         6.74         6.05         6.9           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middlele         6.5         2         1         1         12:35         17.9         8.14         28.9         6.6         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middlele         6.5         2         2         12:35         17.9         8.15         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Middle  |                | 2       | 2         | 11:34 |          |      |               |              |                |          |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR9         Bottom         4.4         3         2         11:34         18         8.25         28.9         6.7         6.27         7.3           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         12:35         17.9         8.19         28.8         6.74         6.05         6.9           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middlele         6.5         2         1         1         12:35         17.9         8.14         28.9         6.6         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middlele         6.5         2         2         12:35         17.9         8.15         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Bottom  | 4.4            | 3       | 1         | 11:34 | 18       | 8.24 | 28.9          | 6.67         | 6.21           | 7.4      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         12:35         17.9         8.19         28.8         6.74         6.05         6.9           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         2         12:35         17.9         8.2         28.9         6.7         6.11         7.1           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         12:35         17.9         8.14         28.9         6.66         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17         29         6.47         6.54         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR9   | Bottom  | 4.4            | 3       | 2         | 11:34 | 18       |      |               | 6.7          | 6.27           | 7.3      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Surface         1         1         2         12:35         17.9         8.2         28.9         6.7         6.11         7.1           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         12:35         17.9         8.14         28.9         6.66         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         17.9         8.15         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         1         18:08         18:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    |                  |       | Surface | 1              | 1       | 1         | 12:35 | 17.9     |      |               | 6.74         | 6.05           | 6.9      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         1         12:35         17.9         8.14         28.9         6.66         6         7           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         2         12:35         17.9         8.15         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17         29         6.47         6.54         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         2         12:35         18         8.18         29.1         6.47         6.54         7.4           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         1         18:08         18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR10A | Surface | 1              | 1       | 2         | 12:35 | 17.9     |      |               | 6.7          | 6.11           |          |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Middle         6.5         2         2         12:35         17.9         8.15         29         6.63         5.93         6.8           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17         29         6.47         6.54         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         2         12:35         18         8.18         29.1         6.44         6.47         7.7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         1         18:08         18.3         8.01         29.1         6.87         5.58         6.5           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Midelle         10.9         2         1         18:08         18.3 <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-02</td> <td>Mid-Ebb</td> <td>Fine</td> <td>Small Wave</td> <td>SR10A</td> <td>Middle</td> <td>6.5</td> <td>2</td> <td>1</td> <td>12:35</td> <td>17.9</td> <td>8.14</td> <td></td> <td>6.66</td> <td>6</td> <td>7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR10A | Middle  | 6.5            | 2       | 1         | 12:35 | 17.9     | 8.14 |               | 6.66         | 6              | 7        |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         1         12:35         18         8.17         29         6.47         6.54         7.4           TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         2         12:35         18         8.18         29.1         6.44         6.47         7.7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         18:08         18.4         8.02         28.9         6.84         5.7         6.6           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         18:08         18.3         8.01         29.1         6.87         5.58         6.5           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         1         18:08         18.2         8.05         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR10A | Middle  | 6.5            | 2       | 2         | 12:35 | 17.9     |      |               | 6.63         | 5.93           | 6.8      |
| TMCLKL         HY/2012/08         2015-01-02         Mid-Ebb         Fine         Small Wave         SR10A         Bottom         12         3         2         12:35         18         8.18         29.1         6.44         6.47         7.7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         18:08         18.4         8.02         28.9         6.84         5.7         6.6           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         2         18:08         18.3         8.01         29.1         6.87         5.58         6.5           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         1         18:08         18.3         8.03         29.2         6.74         5.92         7.1           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         1         18:08         18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    | Small Wave       | SR10A | Bottom  | 12             | 3       | 1         | 12:35 | 18       |      |               | 6.47         | 6.54           | 7.4      |
| TMCLKL       HY/2012/08       2015-01-05       Mid-Flood       Cloudy       Small Wave       CS4       Surface       1       1       18:08       18.4       8.02       28.9       6.84       5.7       6.6         TMCLKL       HY/2012/08       2015-01-05       Mid-Flood       Cloudy       Small Wave       CS4       Surface       1       1       2       18:08       18.3       8.01       29.1       6.87       5.58       6.5         TMCLKL       HY/2012/08       2015-01-05       Mid-Flood       Cloudy       Small Wave       CS4       Middle       10.9       2       1       18:08       18.3       8.03       29       6.74       5.92       7.1         TMCLKL       HY/2012/08       2015-01-05       Mid-Flood       Cloudy       Small Wave       CS4       Bottom       20.7       3       1       18:08       18.3       8.03       29.2       6.74       5.92       7.1         TMCLKL       HY/2012/08       2015-01-05       Mid-Flood       Cloudy       Small Wave       CS4       Bottom       20.7       3       1       18:08       18.2       8.05       29.2       6.57       6.22       7.3         TMCLKL       HY/2012/08 </td <td>TMCLKL</td> <td>HY/2012/08</td> <td>2015-01-02</td> <td>Mid-Ebb</td> <td>Fine</td> <td></td> <td></td> <td>Bottom</td> <td>12</td> <td>3</td> <td>2</td> <td>12:35</td> <td>18</td> <td></td> <td></td> <td>6.44</td> <td></td> <td>7.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TMCLKL  | HY/2012/08 | 2015-01-02 | Mid-Ebb   | Fine    |                  |       | Bottom  | 12             | 3       | 2         | 12:35 | 18       |      |               | 6.44         |                | 7.7      |
| TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Surface         1         1         2         18:08         18:3         8.01         29.1         6.87         5.58         6.5           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         1         18:08         18.3         8.01         29.1         6.87         5.58         6.5           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         1         18:08         18.3         8.03         29         6.74         5.92         7.1           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         1         18:08         18.2         8.05         29.4         6.53         6.13         7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         2         18:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | HY/2012/08 | 2015-01-05 | Mid-Flood |         |                  |       |         | 1              | 1       | 1         | 18:08 | 18.4     |      |               | 6.84         |                | 6.6      |
| TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         1         18:08         18.3         8.03         29         6.74         5.92         7.1           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         2         18:08         18.4         8.02         29.2         6.78         5.99         7.2           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         1         18:08         18.3         8.05         29.4         6.53         6.13         7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         2         18:08         18.3         8.06         29.2         6.57         6.22         7.3           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS6         Surface         1         1         16:40         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            | 2015-01-05 | Mid-Flood | •       |                  |       | Surface | 1              | 1       | 2         | 18:08 | -        |      |               | +            |                |          |
| TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Middle         10.9         2         2         18:08         18.4         8.02         29.2         6.78         5.99         7.2           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         1         18:08         18.2         8.05         29.4         6.53         6.13         7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         2         18:08         18.3         8.06         29.2         6.57         6.22         7.3           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS6         Surface         1         1         1         16:40         18.6         8.05         29.2         6.63         5.93         6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |            |           | ,       |                  |       |         | 10.9           | 2       | 1         |       |          | +    |               |              |                | 7.1      |
| TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         1         18:08         18.2         8.05         29.4         6.53         6.13         7           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         2         18:08         18.3         8.06         29.2         6.57         6.22         7.3           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS6         Surface         1         1         1         16:40         18.6         8.05         29.2         6.63         5.93         6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |            |           | ,       |                  |       |         |                | 2       | 2         |       | +        |      |               |              |                | 7.2      |
| TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS4         Bottom         20.7         3         2         18:08         18:3         8.06         29:2         6.57         6.22         7.3           TMCLKL         HY/2012/08         2015-01-05         Mid-Flood         Cloudy         Small Wave         CS6         Surface         1         1         16:40         18.6         8.05         29.2         6.63         5.93         6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |            |            |           | ,       |                  |       |         | +              | 3       | 1         |       |          | _    |               |              |                | 7        |
| TMCLKL HY/2012/08 2015-01-05 Mid-Flood Cloudy Small Wave CS6 Surface 1 1 1 1 16:40 18.6 8.05 29.2 6.63 5.93 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |            |           | ,       |                  |       |         | +              | 3       | 2         |       |          |      |               |              |                | 7.3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |            |           |         |                  |       |         | 1              | 1       | 1         |       | +        | _    |               |              |                |          |
| , a caracteristic contrator contrator and the contrator contrator contrator in the contrator con |         |            |            |           | ,       |                  |       |         | 1              | 1       | 2         | +     | +        |      |               | 6.67         | 6.02           | 7.1      |

| Project          | Works                    | Date       | Tide                   | Weather          | Sea<br>Condition         | Stat         | Level              | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C) | рН           | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|------------|------------------------|------------------|--------------------------|--------------|--------------------|----------------|---------|-----------|----------------|----------|--------------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | CS6          | Middle             | 5.9            | 2       | 1         | 16:40          | 18.5     | 8.05         | 29.2          | 6.55         | 6.16           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | CS6          | Middle             | 5.9            | 2       | 2         | 16:40          | 18.5     | 8.06         | 29.3          | 6.59         | 6.12           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | CS6          | Bottom             | 10.8           | 3       | 1         | 16:40          | 18.4     | 8.07         | 29.4          | 6.32         | 6.47           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | CS6          | Bottom             | 10.8           | 3       | 2         | 16:40          |          | 8.06         | 29.3          | 6.38         | 6.38           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Surface            | 1              | 1       | 1         | 18:36          | 18.4     | 7.98         | 29.1          | 6.76         | 5.76           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Surface            | 1              | 1       | 2         | 18:36          | 18.3     | 7.99         | 29            | 6.72         | 5.84           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Middle             | 7.4            | 2       | 1         | 18:36          |          | 8.01         | 30.1          | 6.67         | 5.92           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Middle             | 7.4            | 2       | 2         | 18:36          | 18.5     | 8            | 30            | 6.64         | 6.02           | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Bottom             | 13.8           | 3       | 1         | 18:36          | _        | 7.97         | 30.1          | 6.53         | 6.14           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS12         | Bottom             | 13.8           | 3       | 2         | 18:36          |          | 7.98         | 30.1          | 6.58         | 6.26           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS13         | Surface            | 1              | 1       | 1         | 18:16          | 18.5     | 7.96         | 29            | 6.63         | 6.02           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS13         | Surface            | 1 .            | 1       | 2         | 18:16          |          | 7.95         | 29.1          | 6.68         | 5.93           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS13         | Middle             | 5.8            | 2       | 10        | 18:16          |          | 7.97         | 29.2          | 6.55         | 5.92           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS13         | Middle             | 5.8            | 2       | 2         | 18:16          | 18.4     | 7.96         | 29.3          | 6.58         | 5.87           | 7.2        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS13<br>IS13 | Bottom             | 10.5           | 3       | 10        | 18:16          |          | 8.02         | 29.3          | 6.42         | 6.27           | 7.4        |
|                  | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy<br>Cloudy | Small Wave               |              | Bottom             | 10.5           | 3       | 1         | 18:16          |          | 8.03         | 29.4          | 6.51<br>6.74 | 6.33           | 7.6        |
| TMCLKL<br>TMCLKL | HY/2012/08               | 2015-01-05 | Mid-Flood<br>Mid-Flood | Cloudy           | Small Wave<br>Small Wave | IS14<br>IS14 | Surface<br>Surface | 1              | 1       | 10        | 18:54<br>18:54 |          | 7.96<br>7.96 | 28.8          |              | 5.63<br>5.67   | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS14         | Middle             | 8.4            | 2       | 1         | 18:54          |          | 8.01         | 28.9          | 6.68<br>6.63 | 5.87           | 6.3<br>6.8 |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS14         | Middle             | 8.4            | 2       | 2         | 18:54          | 18.3     | 8            | 29.1          | 6.69         | 5.91           | 7 1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS14         | Bottom             | 15.8           | 2       | 1         | 18:54          |          | 8.03         | 29.1          | 6.52         | 6.08           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS14         | Bottom             | 15.8           | 3       | 2         | 18:54          |          | 8.02         | 29.2          | 6.44         | 6.16           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS15         | Surface            | 1              | 1       | 1         | 17:58          | 18.5     | 7.99         | 29.2          | 6.74         | 5.84           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS15         | Surface            | 1              | 1       | 2         | 17:58          | 18.4     | 7.98         | 29.1          | 6.79         | 5.91           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS15         | Middle             | 5.6            | 2       | 1         | 17:58          |          | 8.02         | 29.1          | 6.81         | 5.97           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS15         | Middle             | 5.6            | 2       | 2         | 17:58          |          | 8.01         | 29.2          | 6.84         | 6.08           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | IS15         | Bottom             | 10.1           | 3       | 1         | 17:58          | 18.4     | 7.98         | 29.3          | 6.68         | 6.16           | 7.2        |
| TMCLKL           | HY/2012/08               |            |                        | Cloudy           |                          | IS15         | Bottom             |                | 3       | 2         | 17:58          |          |              | 29.2          | 6.71         | 6.23           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR8          | Surface            | 1              | 1       | 1         | 17:29          |          |              | 29.3          | 6.49         | 6.02           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR8          | Surface            | 1              | 1       | 2         | 17:29          |          |              | 29.2          | 6.54         | 6.1            | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           |                          | SR8          | Middle             |                | 2       | 1         | 17:29          | 1        | -            |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           |                          | SR8          | Middle             |                | 2       | 2         | 17:29          |          |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR8          | Bottom             | 4              | 3       | 1         | 17:29          | 18.4     | 8.02         | 29.4          | 6.38         | 6.29           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR8          | Bottom             | 4              | 3       | 2         | 17:29          |          |              | 29.3          | 6.42         | 6.33           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Surface            | 1              | 1       | 1         | 17:43          |          |              | 29.2          | 6.58         | 6.01           | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Surface            | 1              | 1       | 2         | 17:43          | 18.6     |              | 29.1          | 6.61         | 6.08           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Middle             |                | 2       | 1         | 17:43          |          |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Middle             |                | 2       | 2         | 17:43          |          |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Bottom             | 4.6            | 3       | 1         | 17:43          | 18.5     | 8.02         | 29.3          | 6.45         | 6.37           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR9          | Bottom             | 4.6            | 3       | 2         | 17:43          | 18.4     | 8.03         | 29.2          | 6.39         | 6.33           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Surface            | 1              | 1       | 1         | 17:03          | 18.5     | 8.01         | 29.2          | 6.71         | 5.86           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Surface            | 1              | 1       | 2         | 17:03          |          | 8.02         |               | 6.78         | 5.82           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Middle             | 6.4            | 2       | 1         | 17:03          |          |              |               | 6.64         | 5.7            | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Middle             | 6.4            | 2       | 2         | 17:03          |          |              | 29.3          | 6.69         | 5.62           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Bottom             | 11.8           | 3       | 1         | 17:03          |          |              | 29.4          | 6.48         | 5.92           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Flood              | Cloudy           | Small Wave               | SR10A        | Bottom             | 11.8           | 3       | 2         | 17:03          | 18.4     |              | 29.3          | 6.41         | 5.95           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS4          | Surface            | 1              | 1       | 1         | 11:24          |          |              | 28.9          | 6.79         | 5.74           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS4          | Surface            | 1              | 1       | 2         | 11:24          |          |              | 28.9          | 6.76         | 5.66           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           |                          | CS4          | Middle             | 10.7           | 2       | 1         | 11:24          |          |              | 29            | 6.7          | 6.03           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS4          | Middle             | 10.7           | 2       | 2         | 11:24          |          | 8.02         |               | 6.67         | 6.1            | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           |                          | CS4          | Bottom             | 20.4           | 3       | 1         | 11:24          |          |              | 29.2          | 6.49         | 6.24           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS4          | Bottom             | 20.4           | 3       | 2         | 11:24          |          |              | 29.3          | 6.45         | 6.29           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS6          | Surface            | 1              | 1       | 1         | 13:46          |          |              | 29.1          | 6.55         | 6.04           | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS6          | Surface            | 1              | 11      | 2         | 13:46          |          | 8.03         |               | 6.51         | 6.1            | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS6          | Middle             | 5.8            | 2       | 1         | 13:46          |          |              | 29.1          | 6.49         | 6.23           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           | Small Wave               | CS6          | Middle             | 5.8            | 2       | 2         | 13:46          |          | _            | 29.1          | 6.46         | 6.18           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb                | Cloudy           |                          | CS6          | Bottom             | 10.6           | 3       | 10        | 13:46          |          |              | 29.2          | 6.3          | 6.45           | 7.6        |
| TIVICLKL         | HY/2012/08               | 2015-01-05 | ממ⊐-טוועון             | Cloudy           | Small Wave               | 1000         | Bottom             | J1U.b          | [3      | 2         | 13:46          | 10.0     | J0.06        | 29.2          | 6.28         | 6.52           | 7.7        |

| Project          | Works                    | Date       | Tide               | Weather | Sea<br>Condition         | Stat         | Level            | Water<br>Depth | Lev_Cod  | Replicate | Time           | Temp(°C)     | рН   | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|------------|--------------------|---------|--------------------------|--------------|------------------|----------------|----------|-----------|----------------|--------------|------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Surface          | 1              | 1        | 1         | 12:06          | 18.3         | 7.97 | 28.9          | 6.64         | 5.89           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Surface          | 1              | 1        | 2         | 12:06          | 18.3         | 7.98 | 28.9          | 6.67         | 5.95           | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Middle           | 7.2            | 2        | 1         | 12:06          | 18.3         | 7.99 | 29            | 6.6          | 6.01           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Middle           | 7.2            | 2        | 2         | 12:06          | 18.3         | 7.98 | 29            | 6.56         | 6.09           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Bottom           | 13.4           | 3        | 1         | 12:06          | 18.3         | 7.96 | 29.1          | 6.48         | 6.27           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS12         | Bottom           | 13.4           | 3        | 2         | 12:06          |              | 7.97 | 29.1          | 6.46         | 6.33           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Surface          | 1              | 1        | 1         | 12:27          | 18.3         | 7.93 | 28.9          | 6.59         | 6.08           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Surface          | 1              | 1        | 2         | 12:27          | -            | 7.94 | 29            | 6.61         | 6.14           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Middle           | 5.6            | 2        | 1         | 12:27          | -            | 7.95 | 29            | 6.5          | 6              | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Middle           | 5.6            | 2        | 2         | 12:27          |              | 7.93 | 29.1          | 6.47         | 5.93           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Bottom           | 10.2           | 3        | 1         | 12:27          | 18.4         | 7.99 | 29.2          | 6.38         | 6.35           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS13         | Bottom           | 10.2           | 3        | 2         | 12:27          | 18.4         | 8    | 29.1          | 6.41         | 6.43           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS14         | Surface          |                |          | 10        | 11:45          |              | 7.94 | 28.9          | 6.63         | 5.79           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS14         | Surface          | 0.0            | 0        | 4         | 11:45          |              | 7.95 | 28.8          | 6.6          | 5.84           | 6.5        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS14<br>IS14 | Middle<br>Middle | 8.3            | 2        | 10        | 11:45          | 18.3<br>18.3 | 7.99 | 28.9          | 6.57<br>6.53 | 5.99<br>6.05   | 7.1        |
|                  |                          | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               |              | _                |                | 2        | 1         | 11:45          |              | 7.98 |               |              |                | 6.9        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-05 | Mid-Ebb<br>Mid-Ebb | Cloudy  | Small Wave<br>Small Wave | IS14<br>IS14 | Bottom<br>Bottom | 15.6<br>15.6   | <u>၂</u> | 10        | 11:45<br>11:45 | _            | 8.01 | 29.1<br>29.1  | 6.41         | 6.19<br>6.25   | 7.2<br>7.4 |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS14         | Surface          | 10.0           | 3<br>  1 | 1         | 12:49          |              | 7.98 | 29            | 6.68         | 5.95           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS15         | Surface          | 1              | 1        | 2         | 12:49          | -            | 7.99 |               | 6.71         | 6              | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS15         | Middle           | 5.4            | 2        | 1         | 12:49          | 18.4         | 8    | 29            | 6.74         | 6.09           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS15         | Middle           | 5.4            | 2        | 2         | 12:49          |              | 8.01 | 29.1          | 6.75         | 6.16           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS15         | Bottom           | 9.8            | 3        | 1         | 12:49          | -            | 7.97 | 29.1          | 6.63         | 6.28           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | IS15         | Bottom           | 9.8            | 3        | 2         | 12:49          | 18.3         | 7.96 | 29.1          | 6.6          | 6.34           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR8          | Surface          | 1              | 1        | 1         | 13:28          |              | 8.01 | 29            | 6.45         | 6.11           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR8          | Surface          | 1              | 1        | 2         | 13:28          | -            | 8.02 | 29.1          | 6.42         | 6.18           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR8          | Middle           | '              | 2        | 1         | 13:28          | 10.4         | 0.02 | 20.1          | 0.42         | 0.10           | 7.0        |
| TMCLKL           | HY/2012/08               |            | Mid-Ebb            | Cloudy  |                          | SR8          | Middle           |                | 2        | 2         | 13:28          | 1            |      | 1             |              |                | +          |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR8          | Bottom           | 3.8            | 3        | 1         | 13:28          | 18.4         | 8.03 | 29.1          | 6.33         | 6.36           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR8          | Bottom           | 3.8            | 3        | 2         | 13:28          |              | -    |               | 6.37         | 6.42           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Surface          | 1              | 1        | 1         | 13:10          |              | 7.99 |               | 6.52         | 6.07           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Surface          | 1              | 1        | 2         | 13:10          | 18.5         | 8    | 29            | 6.49         | 6.14           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Middle           |                | 2        | 1         | 13:10          |              |      |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Middle           |                | 2        | 2         | 13:10          |              |      |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Bottom           | 4.4            | 3        | 1         | 13:10          | 18.4         | 8.01 | 29            | 6.4          | 6.4            | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR9          | Bottom           | 4.4            | 3        | 2         | 13:10          | 18.4         | 8.02 | 29            | 6.36         | 6.48           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Surface          | 1              | 1        | 1         | 14:09          | 18.4         | 8    | 29.1          | 6.68         | 5.92           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Surface          | 1              | 1        | 2         | 14:09          | 18.5         | 7.99 | 29.1          | 6.65         | 5.84           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Middle           | 6.2            | 2        | 1         | 14:09          | 18.5         | 7.94 | 29.1          | 6.59         | 5.69           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Middle           | 6.2            | 2        | 2         | 14:09          | 18.5         | 7.95 | 29.2          | 6.56         | 5.74           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Bottom           | 11.4           | 3        | 1         | 14:09          | 18.4         | 7.91 | 29.2          | 6.4          | 5.99           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-05 | Mid-Ebb            | Cloudy  | Small Wave               | SR10A        | Bottom           | 11.4           | 3        | 2         | 14:09          | 18.5         | 7.92 | 29.2          | 6.38         | 6.06           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Surface          | 1              | 1        | 1         | 10:34          | 18.1         | 8.05 | 28.9          | 6.85         | 5.65           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Surface          | 1              | 1        | 2         | 10:34          | 18           | 8.06 |               | 6.82         | 5.57           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Middle           | 10.8           | 2        | 1         | 10:34          |              |      | 29.1          | 6.76         | 5.94           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Middle           | 10.8           | 2        | 2         | 10:34          |              |      | 29.2          | 6.73         | 6.01           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Bottom           | 20.6           | 3        | 1         | 10:34          |              | 8.1  | 29.3          | 6.55         | 6.15           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS4          | Bottom           | 20.6           | 3        | 2         | 10:34          |              | 8.09 |               | 6.51         | 6.2            | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Surface          | 1              | 1        | 1         | 08:10          |              | 8.08 | 29.1          | 6.61         | 5.95           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Surface          | 1              | 1        | 2         | 08:10          |              | -    | 29.2          | 6.57         | 6.01           | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Middle           | 5.9            | 2        | 1         | 08:10          |              | 8.1  | 29.2          | 6.55         | 6.14           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Middle           | 5.9            | 2        | 2         | 08:10          |              | 8.11 | 29.3          | 6.52         | 6.09           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Bottom           | 10.8           | 3        | 1         | 08:10          |              | 8.11 | 29.3          | 6.36         | 6.36           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | CS6          | Bottom           | 10.8           | 3        | 2         | 08:10          |              |      | 29.2          | 6.34         | 6.43           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | IS12         | Surface          | 1              | 1        | 1         | 09:58          |              | +    | 28.9          | 6.7          | 5.8            | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  | Small Wave               | IS12         | Surface          | 1              | 1        | 2         | 09:58          |              | -    |               | 6.73         | 5.86           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | Mid-Flood          | Cloudy  |                          | IS12         | Middle           | 7.4            | 2        | 1         | 09:58          |              | 8.05 |               | 6.66         | 5.92           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-07 | IMIG-Flood         | Cloudy  | Small Wave               | JIS12        | Middle           | /.4            | 2        | 2         | 09:58          | J18.3        | 8.04 | 29.1          | 6.62         | [6             | 7.3        |

| Project          | Works                    | Date        | Tide                   | IVVESTNER | Sea<br>Condition | Stat | Level              | Water<br>Depth | Lev_Cod       | Replicate     | Time           | Temp(°C)     | рН   | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|-------------|------------------------|-----------|------------------|------|--------------------|----------------|---------------|---------------|----------------|--------------|------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS12 | Bottom             | 13.8           | 3             | 1             | 09:58          | 18.4         | 8.02 | 29.2          | 6.54         | 6.18           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS12 | Bottom             | 13.8           | 3             | 2             | 09:58          | 18.5         | 8.03 | 29.1          | 6.52         | 6.24           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS13 | Surface            | 1              | 1             | 1             | 09:40          | 18.3         | 7.99 | 29            | 6.65         | 5.99           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS13 | Surface            | 1              | 1             | 2             | 09:40          | 18.2         | 8    | 29.1          | 6.67         | 6.05           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS13 | Middle             | 5.7            | 2             | 1             | 09:40          | 18.4         | 8.01 | 29.3          | 6.56         | 5.91           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS13 | Middle             | 5.7            | 2             | 2             | 09:40          | 18.3         | 8    | 29.2          | 6.53         | 5.84           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    | Small Wave       | IS13 | Bottom             | 10.4           | 3             | 1             | 09:40          | 18.4         | 8.05 | 29.3          | 6.44         | 6.26           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | Cloudy    |                  |      | Bottom             | 10.4           | 3             | 2             | 09:40          | 18.4         | 8.06 | 29.3          | 6.47         | 6.34           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      | Surface            | 1              | 1             | 1             | 10:16          | 18.2         | 8    | 29            | 6.69         | 5.7            | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  | IS14 | Surface            | 1              | 1             | 2             | 10:16          | 18.2         | 8.01 | 29.1          | 6.66         | 5.75           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  | IS14 |                    | 8.4            | 2             | 1             | 10:16          | 18.2         | 8.05 | 29.1          | 6.63         | 5.9            | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  | IS14 | Middle             | 8.4            | 2             | 2             | 10:16          | 18.1         | 8.06 | 29.2          | 6.59         | 5.96           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Bottom             | 15.8           | 3             | 1             | 10:16          | 18.3         | 8.07 | 29.2          | 6.47         | 6.1            | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Bottom             | 15.8           | 3             | 2             | 10:16          | 18.4         | 8.08 | 29.1          | 6.44         | 6.16           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Surface            | 1              | 1             | 1             | 09:22          | 18.2         | 8.04 | 29.1          | 6.74         | 5.86           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Surface            | 1              | 1             | 2             | 09:22          | 18.3         | 8.05 | 29            | 6.77         | 5.91           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      |                    | 5.6            | 2             | 1             | 09:22          | 18.3         | +    | 29.1          | 6.8          | 6              | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Middle             | 5.6            | 2             | 2             | 09:22          | 18.2         | 8.06 | 29.2          | 6.81         | 6.07           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      |                    | 10.2           | 3             | 1             | 09:22          | 18.3         | 8.03 | 29.2          | 6.69         | 6.19           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      | Bottom             | 10.2           | 3             | 2             | 09:22          | 18.4         | 8.04 | 29.1          | 6.66         | 6.25           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  | SR8  | Surface            | 1              | 1             | 1             | 08:46          | 18.3         | 8.07 | 29.1          | 6.51         | 6.02           | /          |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      | Surface            | 1              | 1             | 2             | 08:46          | 18.2         | 8.08 | 29.2          | 6.48         | 6.09           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  | SR8  | Middle             |                | 2             | 1             | 08:46          |              |      |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  | SR8  | Middle             | 1.0            | 2             | 2             | 08:46          | 1,0,4        | 0.00 | 00.0          |              | 0.07           |            |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Bottom             | 4.2            | 3             | 1             | 08:46          | 18.4         | 8.09 | 29.2          | 6.39         | 6.27           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  |      | Bottom             | 4.2            | 3             | 2             | 08:46          | 18.4         | 8.1  | 29.1          | 6.43         | 6.33           | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         | Small Wave       |      | Surface            | 1              | 1             | 1             | 09:04          | 18.4         | 8.05 | 29            | 6.58         | 5.98           | 6.9        |
|                  | HY/2012/08               |             | Mid-Flood              | ,         |                  |      | Surface            | 1              | 1             | 2             | +              | 18.3         | 8.06 | 29.1          | 6.55         | 6.05           | /          |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  | SR9  | Middle             |                | 2             | 1             | 09:04          | 1            |      |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | ,         |                  | SR9  | Middle             | 1.0            | 2             | 2             | 09:04          | 10.4         | 0.07 | 00.4          | 0.40         | 0.04           | 7.0        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      |                    | 4.6            | 3             | 0             | 09:04          | 18.4         | _    | 29.1          | 6.46         | 6.31           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      |                    | 4.6            | 3             | 2             | 09:04          | 18.5         | +    | 29            | 6.42         | 6.39           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      | Surface            |                | 4             | 0             | 08:28          | 18.4         |      | 29.2          | 6.74         | 5.83           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              | •         |                  |      | Surface            | 0.0            | 0             | 4             | 08:28          | 18.3         | 8.05 | 29.1          | 6.71         | 5.75           | 7          |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-07  | Mid-Flood<br>Mid-Flood | ,         |                  |      |                    | 6.3<br>6.3     | 2             | <u>   </u>    | 08:28          | 18.5         | 8.01 | 29.2          | 6.65<br>6.62 | 5.6<br>5.65    | 6.9<br>6.7 |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      |                    | 11.6           | 2             | 1             | 08:28<br>08:28 | 18.4         | +    | 29.3          | 6.46         | 5.9            | 0.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Flood              |           |                  |      |                    | 11.6           | <u>ာ</u>      | ) l           | 08:28          | 18.5<br>18.6 | -    | 29.4          | 6.44         | 5.97           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  |      |                    | 11.0           | <u>ی</u><br>ا | 1             | 12:33          |              | _    | 29.3          | 6.81         | 5.69           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | _         |                  |      | Surface<br>Surface | 1              | 1             | 2             | 12:33          | 18.2<br>18.1 | +    | 29.1          | 6.74         | 5.63           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | _         |                  |      |                    | 10.7           | 2             | 1             | 12:33          | 18.2         | +    | 29.2<br>29.3  | 6.63         | 6.03           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  |      |                    | 10.7           | 2             | 2             | 12:33          | 18.3         | -    | 29.2          | 6.66         | 6.11           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07  |                        | _         |                  |      |                    | 20.4           | 3             | 1             | 12:33          | 18.3         | +    | 29.4          | 6.52         | 6.19           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  |      |                    | 20.4           | 3             | 2             | 12:33          | 18.2         |      | 29.3          | 6.49         | 6.23           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  | CS6  | Surface            | 1              | 1             | 1             | 15:12          | 18.5         |      | 29.2          | 6.57         | 5.99           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  | CS6  | Surface            | 1              | 1             | 2             | 15:12          | 18.4         |      | 29.3          | 6.52         | 6.11           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-07  |                        | •         |                  |      |                    | 5.8            | 2             | 1             | 15:12          | 18.4         |      | 29.3          | 6.48         | 6.18           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  | CS6  |                    | 5.8            | 2             | 2             | 15:12          | 18.3         | _    | 29.4          | 6.46         | 6.13           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | •         |                  | CS6  |                    | 10.6           | 3             | 1             | 15:12          | 18.3         | _    | 29.5          | 6.3          | 6.47           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  |      |                    | 10.6           | 3             | 2             | 15:12          | 18.4         | _    | 29.4          | 6.31         | 6.51           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | •         |                  | IS12 | Surface            | 1              | 1             | 1             | 13:11          | 18.3         | _    | 29.2          | 6.63         | 5.89           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | •         |                  | IS12 | Surface            | 1              | 1             | 2             | 13:11          | 18.2         | _    | 29.1          | 6.67         | 5.92           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | _         |                  | IS12 |                    | 7.3            | 2             | 1             | 13:11          | 18.3         |      | 29.2          | 6.52         | 5.98           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  | IS12 | Middle             | 7.3            | 2             | 2             | 13:11          | 18.4         | _    | 29.3          | 6.56         | 6.02           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                | _         |                  |      |                    | 13.6           | 3             | <u>-</u><br>1 | 13:11          | 18.5         |      | 29.3          | 6.47         | 6.24           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  | IS12 |                    | 13.6           | 3             | 2             | 13:11          | 18.5         | _    | 29.4          | 6.43         | 6.31           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-07  | Mid-Ebb                |           |                  |      | Surface            | 1              | 1             | 1             | 13:29          | 18.3         |      | 29.2          | 6.53         | 6.08           | 7          |
|                  |                          | 2015-01-07  |                        |           | Small Wave       |      | Surface            | 1              | 1             | 2             | 13:29          |              |      |               | 6.56         | 6.17           | 7.2        |
| TIVIOLILL        | 111/2012/00              | 1-010-01-01 | IVIIG LUU              | Oloudy    | Ciliali Wave     | 1010 | Journale           | Ι'             | <u> </u>      | <u> -</u>     | 10.23          | 110.7        | ļ    | 120.1         | 10.00        | 10.17          | 1.4        |

| Project   | Works        | Date        | Tide          | Weather         | Sea<br>Condition | Stat  | Level   | Water<br>Depth | Lev_Cod | Replicate     | Time  | Temp(°C) | рН    | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|-----------|--------------|-------------|---------------|-----------------|------------------|-------|---------|----------------|---------|---------------|-------|----------|-------|---------------|----------|----------------|----------|
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS13  | Middle  | 5.5            | 2       | 1             | 13:29 | 18.4     | 8.02  | 29.4          | 6.48     | 5.97           | 6.9      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS13  | Middle  | 5.5            | 2       | 2             | 13:29 | 18.4     | 8.02  | 29.3          | 6.43     | 5.91           | 6.7      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS13  | Bottom  | 10.1           | 3       | 1             | 13:29 | 18.5     | 8.06  | 29.4          | 6.39     | 6.32           | 7.6      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS13  | Bottom  | 10.1           | 3       | 2             | 13:29 | 18.4     | 8.07  | 29.5          | 6.32     | 6.39           | 7.7      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Surface | 1              | 1       | 1             | 12:52 | 18.3     |       | 29.2          | 6.63     | 5.77           | 6.9      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Surface | 1              | 1       | 2             | 12:52 | 18.2     | 8.02  | 29.1          | 6.58     | 5.82           | 6.8      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Middle  | 8.2            | 2       | 1             | 12:52 | 18.3     | 8.06  | 29.2          | 6.58     | 5.96           | 7        |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Middle  | 8.2            | 2       | 2             | 12:52 | 18.4     | 8.07  | 29.3          | 6.54     | 6.03           | 7.3      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Bottom  | 15.4           | 3       | 1             | 12:52 | 18.4     | 8.09  | 29.3          | 6.41     | 6.18           | 7.2      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS14  | Bottom  | 15.4           | 3       | 2             | 12:52 | 18.5     | 8.08  | 29.4          | 6.37     | 6.22           | 7.4      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Surface | 1              | 1       | 1             | 13:47 | 18.3     | 8.06  | 29.3          | 6.63     | 5.92           | 6.9      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Surface | 1              | 1       | 2             | 13:47 | 18.4     | 8.06  | 29.2          | 6.68     | 5.99           | 6.7      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Middle  | 5.5            | 2       | 1             | 13:47 | 18.3     | 8.06  | 29.2          | 6.7      | 6.13           | 7.2      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Middle  | 5.5            | 2       | 2             | 13:47 | 18.2     | 8.07  | 29.3          | 6.72     | 6.08           | 7.5      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Bottom  | 10             | 3       | 1             | 13:47 | 18.3     | 8.04  | 29.3          | 6.64     | 6.23           | 7.4      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | IS15  | Bottom  | 10             | 3       | 2             | 13:47 | 18.4     | 8.05  | 29.4          | 6.6      | 6.31           | 7.1      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Surface | 1              | 1       | 1             | 14:23 | 18.4     | 8.08  | 29.3          | 6.47     | 6.12           | 7.3      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Surface | 1              | 1       | 2             | 14:23 | 18.5     | 8.09  | 29.2          | 6.42     | 6.17           | 7.1      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Middle  |                | 2       | 1             | 14:23 |          |       |               |          |                |          |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Middle  |                | 2       | 2             | 14:23 |          |       |               |          |                |          |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Bottom  | 4              | 3       | 1             | 14:23 | 18.6     | 8.09  | 29.3          | 6.33     | 6.34           | 7.4      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR8   | Bottom  | 4              | 3       | 2             | 14:23 | 18.5     | 8.1   | 29.4          | 6.38     | 6.41           | 7.6      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Surface | 1              | 1       | 1             | 14:06 | 18.5     | 8.06  | 29.2          | 6.52     | 6.07           | 7.1      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Surface | 1              | 1       | 2             | 14:06 | 18.4     | 8.07  | 29.1          | 6.46     | 6.14           | 7.3      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Middle  |                | 2       | 1             | 14:06 |          |       |               |          |                |          |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Middle  |                | 2       | 2             | 14:06 |          |       |               |          |                |          |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Bottom  | 4.3            | 3       | 1             | 14:06 | 18.6     | 8.09  | 29.3          | 6.41     | 6.38           | 7.4      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR9   | Bottom  | 4.3            | 3       | 2             | 14:06 | 18.5     | 8.08  | 29.2          | 6.37     | 6.47           | 7.7      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Surface | 1              | 1       | 1             | 14:41 | 18.5     | +     | 29.3          | 6.7      | 5.89           | 6.8      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Surface | 1              | 1       | 2             | 14:41 | 18.4     | 8.06  | 29.2          | 6.67     | 5.84           | 6.9      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Middle  | 6.2            | 2       | 1             | 14:41 | 18.5     | 8.02  | 29.4          | 6.61     | 5.68           | 6.6      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Middle  | 6.2            | 2       | 2             | 14:41 | 18.6     | 8.01  | 29.3          | 6.58     | 5.74           | 6.5      |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Bottom  | 11.3           | 3       | 1             | 14:41 | 18.6     |       | 29.3          | 6.4      | 5.97           | 7        |
| TMCLKL    | HY/2012/08   | 2015-01-07  | Mid-Ebb       | Cloudy          | Small Wave       | SR10A | Bottom  | 11.3           | 3       | 2             | 14:41 | 18.7     | -     | 29.4          | 6.33     | 6.06           | 7.1      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Surface | 1              | 1       | 1             | 11:32 | 18       | -     | 28.7          | 7.56     | 5.84           | 6.7      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Surface | 1              | 1       | 2             | 11:32 | 17.9     | 8.02  |               | 7.59     | 5.73           | 6.6      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Middle  | 10.8           | 2       | 1             | 11:32 | 18       | +     | 28.8          | 7.5      | 6.04           | 7        |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Middle  | 10.8           | 2       | 2             | 11:32 | 18.1     |       | 28.8          | 7.47     | 5.96           | 6.8      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Bottom  | 20.6           | 3       | 1             | 11:32 | 18.1     | 8     | 28.9          | 7.13     | 6.17           | 7.1      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS4   | Bottom  | 20.6           | 3       | 2             | 11:32 | 18.1     | 7.99  | 29            | 7.15     | 6.25           | 7.3      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Surface | 1              | 1       | 1             | 08:45 | 17.9     | +     | 27.2          | 7.47     | 6.84           | 7.8      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Surface | 1              | 1       | 2             | 08:45 | 17.9     | -     | 27.2          | 7.44     | 6.93           | 8        |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Middle  | 6              | 2       | 1             | 08:45 | 17.9     | -     | 27.2          | 7.5      | 6.69           | 7.4      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Middle  | 6              | 2       | 2             | 08:45 | 18       | -     | 27.3          | 7.49     | 6.72           | 7.7      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Bottom  | 11             | 3       | 1             | 08:45 | 18       |       | 27.4          | 7.4      | 6.91           | 7.9      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | CS6   | Bottom  | 11             | 3       | 2             | 08:45 | 18       |       | 27.5          | 7.37     | 6.98           | 8.2      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Surface | 1              | 1       | 1             | 10:52 | 17.9     | -     | 28.4          | 7.38     | 5.24           | 6.4      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Surface | 1              | 1       | 2             | 10:52 | 17.9     | 8.02  |               | 7.35     | 5.35           | 6.6      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Middle  | 7.5            | 2       | 1             | 10:52 | 17.9     | +     | 28.5          | 7.29     | 5.86           | 6.9      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Middle  | 7.5            | 2       | 2             | 10:52 | 18       |       | 28.5          | 7.25     | 5.79           | 6.5      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Bottom  | 14             | 3       | 1             | 10:52 | 18       | +     | 28.6          | 7.16     | 5.61           | 6.6      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS12  | Bottom  | 14             | 3       | 2             | 10:52 | 18.1     | +     | 28.5          | 7.19     | 5.68           | 6.7      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS13  | Surface | 11             | 1       | 11            | 10:33 | 17.9     |       | 28.5          | 7.54     | 5.06           | 6.2      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS13  | Surface | 1              | 1       | 2             | 10:33 | 17.9     | +     | 28.4          | 7.5      | 4.95           | 6.3      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS13  | Middle  | 5.7            | 2       | <del> -</del> | 10:33 | 17.9     | 8.1   | 28.5          | 7.43     | 5.62           | 6.8      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS13  | Middle  | 5.7            | 2       | 12            | 10:33 | 17.9     | 8.11  | 28.5          | 7.41     | 5.71           | 6.5      |
| TMCLKL    | HY/2012/08   | 2015-01-09  | Mid-Flood     | Fine            | Calm             | IS13  | Bottom  | 10.4           | 3       | 1             | 10:33 | 18       | +     | 28.5          | 7.36     | 5.43           | 6.7      |
|           |              | 2015-01-09  |               | Fine            | Calm             | IS13  | Bottom  |                | 3       | 2             | 10:33 |          | 8.06  |               | 7.38     | 5.5            | 6.4      |
| TIVIOLINE | 1111/2012/00 | 12010 01-03 | Intila i 100a | [1 111 <b>0</b> | Jouini           | 11010 | Portoni | 110.7          | 12      | 1-            | 10.00 | 110      | 10.00 | 1-0.0         | 11.00    | 10.0           |          |

| Project          | Works                    | Date       | Tide                   | Weather      | Sea<br>Condition | Stat       | Level            | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C) | рН    | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L) |
|------------------|--------------------------|------------|------------------------|--------------|------------------|------------|------------------|----------------|---------|-----------|----------------|----------|-------|---------------|--------------|----------------|----------|
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Surface          | 1              | 1       | 1         | 11:13          | 17.9     | 7.94  | 28.5          | 7.51         | 5.54           | 6.3      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Surface          | 1              | 1       | 2         | 11:13          | 18       | 7.95  | 28.4          | 7.47         | 5.49           | 6.4      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Middle           | 8.4            | 2       | 1         | 11:13          | 18       | 7.99  | 28.5          | 7.38         | 5.77           | 6.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Middle           | 8.4            | 2       | 2         | 11:13          | 17.9     | 8     | 28.6          | 7.35         | 5.7            | 6.5      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Bottom           | 15.8           | 3       | 1         | 11:13          | _        | 8.02  | 28.7          | 7.29         | 5.97           | 6.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS14       | Bottom           | 15.8           | 3       | 2         | 11:13          | -        | 8.03  | 28.8          | 7.26         | 6.04           | 7.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Surface          | 1              | 1       | 1         | 10:14          | -        | 8.15  | 28.4          | 7.62         | 4.97           | 5.8      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Surface          | 1              | 1       | 2         | 10:14          |          | 8.16  | 28.3          | 7.58         | 4.83           | 5.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Middle           | 5.6            | 2       | 1         | 10:14          |          | 8.17  | 28.5          | 7.49         | 5.98           | /        |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Middle           | 5.6            | 2       | 2         | 10:14          | -        | 8.16  | 28.4          | 7.46         | 5.79           | /.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Bottom           | 10.2           | 3       | 1         | 10:14          |          | 8.17  | 28.6          | 7.43         | 5.56           | 6.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | IS15       | Bottom           | 10.2           | 3       | 2         | 10:14          |          | 8.21  | 28.6          | 7.4          | 5.7            | 6.5      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR8        | Surface          |                | 1       | 10        | 09:43          | _        | 8.03  | 27.1          | 7.51         | 5.24           | 6.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR8        | Surface          | I              | 1       | 2         | 09:43          | 17.9     | 8.04  | 27.2          | 7.48         | 5.37           | 6.7      |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-09 | Mid-Flood              | Fine<br>Fine | Calm<br>Calm     | SR8<br>SR8 | Middle<br>Middle | <u> </u>       | 2       | 10        | 09:43<br>09:43 |          |       |               |              |                |          |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood<br>Mid-Flood |              |                  | SR8        |                  | 4.6            | 2       | 1         | 09:43          | 17.9     | 8.03  | 27.2          | 7.44         | 5.6            | 6 0      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine<br>Fine | Calm<br>Calm     | SR8        | Bottom<br>Bottom | 4.6            | 2       | 10        | 09:43          | _        | 8.03  | 27.2          |              | 5.69           | 6.8      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Surface          | 4.0            | 1       | 1         | 09:43          | 17.9     | 8.1   | 28.6          | 7.41<br>7.67 | 5.16           | 6.5      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Surface          | 1              | 1       | 2         | 09:58          | -        | 8.12  | 28.7          | 7.64         | 5.08           | 6.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Middle           | I              | 2       | 1         | 09:58          | 17.0     | 0.12  | 20.7          | 7.04         | 3.00           | 0.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Middle           | <u> </u>       | 2       | 2         | 09:58          |          |       |               |              |                |          |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Bottom           | 4.8            | 3       | 1         | 09:58          | 17.9     | 8.13  | 28.7          | 7.51         | 5.67           | 6.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR9        | Bottom           | 4.8            | 3       | 2         | 09:58          |          | 8.14  | 28.7          | 7.53         | 5.75           | 6.8      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | Surface          | 1              | 1       | 1         | 09:14          |          | 8.04  | 27.1          | 7.57         | 6.73           | 7 7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | Surface          | 1              | 1       | 2         | 09:14          |          | 8.05  | 27.1          | 7.54         | 6.8            | 7.5      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | Middle           | 6.6            | 2       | 1         | 09:14          |          | 8.05  | 27.1          | 7.5          | 6.63           | 7.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | _                | 6.6            | 2       | 2         |                |          | +     | 27.2          | 7.47         | 6.57           | 7.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | Bottom           | 12.2           | 3       | 1         | 09:14          |          |       | 27.2          | 7.33         | 6.74           | 7.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Flood              | Fine         | Calm             | SR10A      | Bottom           | 12.2           | 3       | 2         | 09:14          | _        | _     | 27.3          | 7.3          | 6.88           | 8        |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS4        | Surface          | 1              | 1       | 1         | 13:36          |          |       |               | 7.37         | 6.11           | 7.3      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | CS4        | Surface          | 1              | 1       | 2         | 13:36          |          | 8.09  |               | 7.39         | 6.13           | 7.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | CS4        | Middle           | 10.7           | 2       | 1         | 13:36          |          | •     | 28.2          | 7.44         | 6.28           | 7.4      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | CS4        | Middle           | 10.7           | 2       | 2         | 13:36          |          | •     | 28.3          | 7.46         | 6.26           | 7.6      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | CS4        | Bottom           | 20.3           | 3       | 1         | 13:36          |          |       | 28.4          | 7.03         | 6.43           | 7.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS4        | Bottom           | 20.3           | 3       | 2         | 13:36          | 18.4     |       | 28.5          | 7.05         | 6.45           | 7.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Surface          | 1              | 1       | 1         | 16:28          | 17.8     | 7.93  | 27            | 7.36         | 7.04           | 8.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Surface          | 1              | 1       | 2         | 16:28          | 17.9     | 7.95  | 27.1          | 7.39         | 7.06           | 8.3      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Middle           | 5.9            | 2       | 1         | 16:28          | 18       | 8.01  | 27.2          | 7.46         | 7.13           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Middle           | 5.9            | 2       | 2         | 16:28          | 18.1     | 8.03  | 27.3          | 7.44         | 7.15           | 8.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Bottom           | 10.8           | 3       | 1         | 16:28          | 18.2     | 8.13  | 27.4          | 7.23         | 7.49           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | CS6        | Bottom           | 10.8           | 3       | 2         | 16:28          | 18.3     | 8.15  | 27.5          | 7.21         | 7.47           | 8.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS12       | Surface          | 1              | 1       | 1         | 14:19          |          | 7.93  |               | 7.3          | 5.33           | 6.4      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS12       | Surface          | 1              | 1       | 2         | 14:19          | 18.1     | 7.95  | 28.1          | 7.28         | 5.35           | 6.5      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | IS12       | Middle           | 7.4            | 2       | 1         | 14:19          |          |       | 28.3          | 7.13         | 6.02           | 7.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS12       | Middle           | 7.4            | 2       | 2         | 14:19          |          | •     | 28.2          | 7.15         | 6.04           | 7        |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS12       | Bottom           | 13.7           | 3       | 1         | 14:19          |          | •     | 28.4          | 7.06         | 6.11           | 7.3      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS12       | Bottom           | 13.7           | 3       | 2         | 14:19          |          | 8.02  | 28.4          | 7.08         | 6.13           | 7.2      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         |                  | IS13       | Surface          | 1              | 1       | 1         | 14:42          | 17.9     | 8     | 28            | 7.32         | 5.27           | 6.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS13       | Surface          | 1              | 1       | 2         | 14:42          |          | -     | 28.1          | 7.34         | 5.29           | 6.4      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | +                | IS13       | Middle           | 5.6            | 2       | 1         | 14:42          |          | +     | 28.2          | 7.21         | 5.74           | 6.9      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS13       | Middle           | 5.6            | 2       | 2         | 14:42          |          |       | 28.3          | 7.19         | 5.76           | 6.7      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | +                | IS13       | Bottom           | 10.1           | 3       | 1         | 14:42          |          |       | 28.4          | 7.16         | 5.88           | 6.8      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS13       | Bottom           | 10.1           | 3       | 2         | 14:42          | 18.5     |       | 28.4          | 7.18         | 5.86           | 7.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | +                | IS14       | Surface          | 1              | 1       | 1         | 13:58          | 18.1     | 8     | 28.1          | 7.4          | 6.03           | 7        |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | Small Wave       | IS14       | Surface          | 1              | 1       | 2         | 13:58          |          |       | 28.2          | 7.42         | 6.05           | 7.1      |
| TMCLKL           | HY/2012/08               | 2015-01-09 | Mid-Ebb                | Fine         | _                | IS14       |                  | 8.3            | 2       | 1         | 13:58          |          |       | 28.3          | 7.3          | 6.12           | 7.4      |
| TIVICLKL         | HY/2012/08               | 2015-01-09 | ממ⊐-בוועון             | Fine         | Small Wave       | 11914      | Middle           | ბ.პ            | 2       | 2         | 13:58          | 118.3    | J7.91 | 28.4          | 7.28         | 6.14           | 7.2      |

| Project | Works      | Date       | Tide      | IVVASTNAR | Sea<br>Condition | Stat  | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|-----------|------------------|-------|---------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS14  | Bottom  | 15.5           | 3       | 1         | 13:58 | 18.4     | 8.13 | 28.5          | 7.13     | 6.55           | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS14  | Bottom  | 15.5           | 3       | 2         | 13:58 | 18.4     | 8.11 | 28.5          | 7.11     | 6.57           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Surface | 1              | 1       | 1         | 15:04 | 17.8     | 8.04 | 28.1          | 7.47     | 5.13           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Surface | 1              | 1       | 2         | 15:04 | 17.9     | 8.06 | 28.2          | 7.49     | 5.15           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Middle  | 5.5            | 2       | 1         | 15:04 | 18       | 8.11 | 28.3          | 7.36     | 6.01           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Middle  | 5.5            | 2       | 2         | 15:04 | 18.1     | 8.13 | 28.3          | 7.34     | 6.03           | 7.2      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Bottom  | 4.9            | 3       | 1         | 15:04 | 18.2     | 8.24 | 28.4          | 7.21     | 6.12           | 7.2      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | IS15  | Bottom  | 4.9            | 3       | 2         | 15:04 | 18.3     | 8.22 | 28.5          | 7.23     | 6.19           | 7.4      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | SR8   | Surface | 1              | 1       | 1         | 15:44 | 17.8     | 7.99 | 27.1          | 7.51     | 6.23           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | SR8   | Surface | 1              | 1       | 2         | 15:44 | 17.8     | 8.01 | 27.2          | 7.53     | 6.25           | 7.3      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       |       | Middle  |                | 2       | 1         | 15:44 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       | SR8   | Middle  |                | 2       | 2         | 15:44 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       |       | Bottom  | 4.4            | 3       | 1         | 15:44 | 17.9     | 8.09 | 27.3          | 7.34     | 6.56           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Bottom  | 4.4            | 3       | 2         | 15:44 | 18       | 8.11 | 27.4          | 7.32     | 6.58           | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       | SR9   | Surface | 1              | 1       | 1         | 15:26 | 17.7     | 8.12 | 28            | 7.55     | 5.24           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Surface | 1              | 1       | 2         | 15:26 | 17.8     | 8.14 | 28.1          | 7.57     | 5.26           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Middle  |                | 2       | 1         | 15:26 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       | SR9   | Middle  |                | 2       | 2         | 15:26 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       |         | 4.5            | 3       | 1         | 15:26 | 17.9     | 8.02 | 28.3          | 7.34     | 5.82           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Bottom  | 4.5            | 3       | 2         | 15:26 | 18       | 8.04 | 28.4          | 7.32     | 5.84           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Surface | 1              | 1       | 1         | 16:08 | 17.9     | 7.89 | 27            | 7.46     | 7.14           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   |           | Small Wave       |       | Surface | 1              | 1       | 2         | 16:08 | 17.9     | 7.91 | 27            | 7.44     | 7.16           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       |       |         | 6.5            | 2       | 1         | 16:08 | 18       | 8.12 | 27.1          | 7.58     | 6.94           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | SR10A | Middle  | 6.5            | 2       | 2         | 16:08 | 18.1     | 8.1  | 27.2          | 7.6      | 6.92           | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | SR10A | Bottom  | 11.9           | 3       | 1         | 16:08 | 18.2     | 8.03 | 27.4          | 7.2      | 7.36           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-09 | Mid-Ebb   | Fine      | Small Wave       | SR10A | Bottom  | 11.9           | 3       | 2         | 16:08 | 18.2     | 8.05 | 27.3          | 7.18     | 7.38           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | Cloudy    | Small Wave       | CS4   | Surface | 1              | 1       | 1         | 12:33 | 17.9     | 7.98 | 28.8          | 6.71     | 5.05           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | Cloudy    | Small Wave       | CS4   | Surface | 1              | 1       | 2         | 12:33 | 18       | 7.99 | 28.8          | 6.73     | 5.03           | 5.6      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | Cloudy    |                  |       | Middle  | 10.5           | 2       | 1         | 12:33 | 18.1     | 8    | 28.8          | 6.65     | 5.11           | 6.2      |
|         | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 10.5           | 2       | 2         | 12:33 | 18.2     |      | 29            | 6.6      | 5.17           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood |           |                  |       | Bottom  | 20             | 3       | 1         | 12:33 | 18.2     |      | 29.1          | 6.57     | 5.23           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood |           |                  |       |         | 20             | 3       | 2         | 12:33 | 18.3     |      | 29.1          | 6.59     | 5.24           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood |           |                  | CS6   | Surface | 1              | 1       | 1         | 09:51 | 17.9     | 7.9  | 28.7          | 6.77     | 4.99           | 6.2      |
| -       | HY/2012/08 | 2015-01-12 | Mid-Flood | •         |                  | CS6   | Surface | 1              | 1       | 2         | 09:51 | 18       |      | 28.8          | 6.75     | 4.95           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 5.7            | 2       | 1         | 09:51 | 18.1     |      | 28.9          | 6.64     | 5.12           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood |           |                  | CS6   |         | 5.7            | 2       | 2         | 09:51 | 18.2     |      | 29            | 6.6      | 5.16           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 10.3           | 3       | 1         | 09:51 | 18.3     | 8.05 |               | 6.51     | 5.22           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | •         |                  |       |         | 10.3           | 3       | 2         | 09:51 | 18.3     |      | 29.1          | 6.56     | 5.24           | 6.3      |
|         | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  | IS12  | Surface | 1              | 1       | 1         | 11:53 | 17.9     |      | 28.8          | 6.7      | 4.86           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  | IS12  | Surface | 1              | 1       | 2         | 11:53 | 18       | _    | 28.7          | 6.75     | 4.84           | 5.6      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 6.5            | 2       | [1        | 11:53 | 18.1     | 8    | 28.9          | 6.62     | 5.14           | 6.2      |
|         | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 6.5            | 2       | 2         | 11:53 | 18.2     |      | 28.9          | 6.64     | 5.18           | 6.4      |
|         | HY/2012/08 |            | Mid-Flood | ,         |                  |       |         | 13             | 3       | 1         | 11:53 | 18.3     |      | 29            | 6.53     | 5.24           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood |           |                  |       |         | 13             | 3       | 2         | 11:53 | 18.2     |      | 29.1          | 6.54     | 5.26           | 6.3      |
| TMCLKL  | HY/2012/08 |            | Mid-Flood |           |                  | IS13  | Surface | 1              | 1       | [1        | 11:33 | 17.9     |      | 28.9          | 6.87     | 5.01           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | •         |                  | IS13  | Surface | 1              | 1       | 2         | 11:33 | 18       |      | 28.9          | 6.85     | 5.04           | 6.1      |
| TMCLKL  | HY/2012/08 |            | Mid-Flood | ,         |                  |       |         | 5.4            | 2       | 1         | 11:33 | 18.2     |      | 29            | 6.74     | 5.21           | 6        |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 5.4            | 2       | 2         | 11:33 | 18.3     |      | 29            | 6.78     | 5.23           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 9.7            | 3       | [1        | 11:33 | 18.3     |      | 29.1          | 6.59     | 5.15           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  | IS13  |         | 9.7            | 3       | 2         | 11:33 | 18.4     |      | 29            | 6.56     | 5.18           | 6.3      |
| TMCLKL  | HY/2012/08 |            | Mid-Flood |           |                  | IS14  | Surface | 1              | 1       | [1        | 12:13 | 17.9     |      | 28.8          | 6.83     | 4.92           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  | IS14  | Surface | 1              | 1       | 2         | 12:13 | 18       |      | 28.8          | 6.88     | 4.97           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 8.1            | 2       | 1         | 12:13 | 18.2     |      | 29            | 6.77     | 5.02           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 8.1            | 2       | 2         | 12:13 | 18.1     |      | 29.8          | 6.79     | 5.07           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 15.2           | 3       | 1         | 12:13 | 18.3     |      | 29.1          | 6.67     | 5.17           | 6        |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | ,         |                  |       |         | 15.2           | 3       | 2         | 12:13 | 18.3     |      | 29.1          | 6.65     | 5.2            | 6.3      |
| TMCLKL  | HY/2012/08 |            | Mid-Flood |           |                  |       | Surface | 1              | 1       | 1         | 11:13 | 18.2     |      | 28.9          | 6.79     | 4.92           | 5.9      |
| TMCLKL  | HY/2012/08 | 2015-01-12 | Mid-Flood | Cloudy    | Small Wave       | IS15  | Surface | [1             | 1       | 2         | 11:13 | 18.1     | 7.94 | 28.8          | 6.81     | 4.97           | 6        |

| Project          | Works                    | Date        | Tide               | Weather          | Sea<br>Condition | Stat     | Level      | Water<br>Depth | Lev_Cod  | Replicate | Time           | Temp(°C) | рН                                               | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|-------------|--------------------|------------------|------------------|----------|------------|----------------|----------|-----------|----------------|----------|--------------------------------------------------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       | IS15     | Middle     | 5.5            | 2        | 1         | 11:13          | 18.2     | 8.01                                             | 28.9          | 6.54         | 5.02           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       | IS15     | Middle     | 5.5            | 2        | 2         | 11:13          | 18.3     | 8.02                                             | 29            | 6.58         | 5.04           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       | IS15     | Bottom     | 10             | 3        | 1         | 11:13          | 18.4     |                                                  | 29            | 6.47         | 5.12           | 6.6        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       |          | Bottom     | 10             | 3        | 2         | 11:13          | 18.4     |                                                  | 29            | 6.5          | 5.17           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                | Small Wave       |          | Surface    | 1              | 1        | 1         | 10:33          | 17.9     |                                                  | 28.8          | 6.78         | 4.86           | 5.8        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | •                |                  |          | Surface    | 1              | 1        | 2         | 10:33          | 18       | 7.98                                             | 28.8          | 6.76         | 4.89           | 5.7        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | •                |                  |          | Middle     |                | 2        | 1         | 10:33          |          |                                                  |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | •                |                  |          | Middle     |                | 2        | 2         | 10:33          |          |                                                  |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           |                  |          | Bottom     | 3.9            | 3        | 1         | 10:33          | 18.2     | 8                                                | 29            | 6.63         | 5.14           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | •                |                  |          | Bottom     | 3.9            | 3        | 2         | 10:33          | 18.2     | 8.02                                             | 29            | 6.65         | 5.1            | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | •                |                  |          | Surface    | 1              | 1        | 1         | 10:53          | 18       |                                                  | 28.8          | 6.84         | 4.86           | 5.7        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                |                  |          | Surface    | 1              | 1        | 2         | 10:53          | 18.1     | 7.83                                             | 28.9          | 6.86         | 4.9            | 6          |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                | Small Wave       |          | Middle     |                | 2        | 1         | 10:53          |          | <u> </u>                                         |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                |                  |          | Middle     |                | 2        | 2         | 10:53          | 1.0.0    | <del>                                     </del> |               | 10.10        | <u> </u>       |            |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                | Small Wave       |          | Bottom     | 4.5            | 3        | 1         | 10:53          | 18.3     |                                                  | 29            | 6.43         | 5.12           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                |                  |          | Bottom     | 4.5            | 3        | 2         | 10:53          | 18.4     | 7.94                                             | 29.1          | 6.42         | 5.14           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       |          | Surface    | 11             | 1        | 1         | 10:13          | 17.9     | 7.9                                              | 28.7          | 6.82         | 5.02           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                | Small Wave       |          | Surface    | 11             | 11       | 2         | 10:13          | 18       | 7.89                                             | 28.8          | 6.85         | 5.06           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | ,                | Small Wave       |          | Middle     | 6              | 2        | 1         | 10:13          | 18.1     | 7.99                                             | 29            | 6.7          | 4.97           | 5.9        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       |          | Middle     | b              | 2        | 2         | 10:13          | 18.2     | 8.01                                             | 28.9          | 6.73         | 4.94           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       |          | Bottom     | 111            | 3        | 1         | 10:13          | 18.4     | 8.05                                             | 29            | 6.67         | 4.99           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Flood          | Cloudy           | Small Wave       |          | Bottom     |                | 3        | 2         | 10:13          | 18.3     | _                                                | 29.1          | 6.66         | 5.03           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           | Small Wave       |          | Surface    | 1              | 1<br> 4  | 1         | 15:50          | 17.8     | 7.99                                             | 28.8          | 6.68         | 5.09           | 5.8        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Surface    | 10.4           | 1        | 2         | 15:50          | 17.9     | 7.99                                             | 28.7          | 6.64         | 5.12           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Middle     | 10.4           | 2        | 0         | 15:50          | 18.2     |                                                  | 28.8          | 6.48         | 5.18           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Middle     | 10.4           | 2        | 2         | 15:50          | 18.1     | 8.01                                             | 28.9          | 6.45         | 5.21           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           | Small Wave       |          | Bottom     | 19.8           | 3        | 0         | 15:50          | 18.2     | +                                                | 29.2          | 6.48         | 5.26           | 6.5        |
|                  | HY/2012/08               |             | Mid-Ebb            | _                |                  | <b>†</b> |            | 19.8           | 3        | 2         | 15:50          | 18.1     |                                                  | 29.1          | 6.44         | 5.29           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Surface    |                |          | 10        | 17:37          | 17.9     |                                                  | 28.8          | 6.7          | 5.08           | 0          |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  |          | Surface    | <br>  E        | 0        | 1         | 17:37          | 18       |                                                  | 28.7          | 6.68         | 5.13<br>5.18   | 6.2<br>6.3 |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-12  | Mid-Ebb<br>Mid-Ebb | Cloudy<br>Cloudy |                  |          |            | 5.5<br>5.5     | 2        | 1         | 17:37<br>17:37 | 18.1     |                                                  | 29.1<br>29    | 6.53<br>6.57 | 5.16           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  | 1        | Bottom     | 10             | 2        | 1         | 17:37          | 18.2     | -                                                | 29.2          | 6.43         | 5.28           | 6.7        |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  |          |            | 10             | <u>ာ</u> | 2         | 17:37          | 18.1     | _                                                | 29.1          | 6.49         | 5.31           | 6.5        |
|                  | HY/2012/08               | 2015-01-12  | Mid-Ebb            | •                |                  |          | Surface    | 10             | ان<br>ا  | 1         | -              |          | _                                                | 28.6          | 6.63         | 4.88           | 5.7        |
| TMCLKL<br>TMCLKL | HY/2012/08               |             | Mid-Ebb            | Cloudy<br>Cloudy |                  |          | Surface    | 1              | 1        | 10        | 16:23<br>16:23 | 18.1     | _                                                |               | 6.66         | 4.97           | 5.8        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          |            | 6.8            | 2        | 1         | 16:23          | 18.2     | _                                                | 28.5<br>28.7  | 6.58         | 5.17           | 6.2        |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  |          | Middle     | 6.8            | 2        | 2         | 16:23          | 18.1     |                                                  | 28.6          | 6.6          | 5.2            | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Bottom     | 12.6           | 2        | 1         | 16:23          | 18       |                                                  | 28.9          | 6.48         | 5.28           | 6.7        |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  |          | Bottom     | 12.6           | 2        | 2         | 16:23          | 17.9     |                                                  | 28.8          | 6.44         | 5.31           | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-12  |                    | Cloudy           |                  | <b>+</b> | Surface    | 1              | 1        | 1         | 16:39          | 18.1     |                                                  | 28.6          | 6.82         | 5.09           | 6          |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  | <b>†</b> | Surface    | 1              | '<br>  1 | 2         | 16:39          | 18       |                                                  | 28.7          | 6.78         | 5.13           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | _                |                  |          |            | 5.2            | 2        | 1         | 16:39          | 18.2     | -                                                | 28.9          | 6.7          | 5.23           | 6.4        |
|                  | HY/2012/08               |             | Mid-Ebb            | Cloudy           |                  |          |            | 5.2            | 2        | 2         | 16:39          | 18.1     |                                                  | 28.8          | 6.64         | 5.28           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          |            | 9.4            | 3        | 1         | 16:39          | 18.1     | 8                                                | 29.3          | 6.52         | 5.18           | 6.4        |
|                  | HY/2012/08               |             | Mid-Ebb            |                  |                  | <b>!</b> |            | 9.4            | 3        | 2         | 16:39          | 18.2     | 8.01                                             | 29.2          | 6.49         | 5.22           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            |                  |                  | <b>!</b> | Surface    | 1              | 1        | 1         | 16:07          | 18.1     |                                                  | 28.9          | 6.77         | 4.98           | 5.7        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Surface    | 1              | 1        | 2         | 16:07          | 18       |                                                  | 28.8          | 6.72         | 5.07           | 5.6        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Middle     | 8              | 2        | 1         | 16:07          | 18.1     |                                                  | 28.8          | 6.72         | 5.13           | 6.2        |
|                  | HY/2012/08               | -           | Mid-Ebb            | Cloudy           |                  |          | Middle     | 8              | 2        | 2         | 16:07          | 18.2     |                                                  | 28.9          | 6.69         | 5.09           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            |                  |                  |          |            | 14.9           | 3        | 1         | 16:07          | 18       |                                                  | 29.2          | 6.63         | 5.23           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          |            | 14.9           | 3        | 2         | 16:07          | 18       |                                                  | 29.3          | 6.58         | 5.26           | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | Cloudy           |                  |          | Surface    | 1              | 1        | 1         | 16:54          | 18       |                                                  | 28.5          | 6.71         | 4.97           | 5.9        |
|                  | HY/2012/08               | 2015-01-12  | Mid-Ebb            |                  |                  |          | Surface    | 1              | 1        | 2         | 16:54          | 18.1     |                                                  | 28.4          | 6.74         | 5.02           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | _                |                  |          |            | 5.4            | 2        | 1         | 16:54          | 18.1     | 8                                                | 29.1          | 6.48         | 5.17           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-12  | Mid-Ebb            | _                |                  |          |            | 5.4            | 2        | 2         | 16:54          | 18       | 8.01                                             | 29.1          | 6.52         | 5.13           | 6.3        |
|                  |                          |             | Mid-Ebb            | _                |                  |          |            | 9.8            | 3        | 1         | 16:54          | 18       | 8.02                                             |               | 6.43         | 5.21           | 6.5        |
|                  |                          | 2015-01-12  |                    |                  | Small Wave       |          | Bottom     |                | 3        | 2         | 16:54          |          | 8.03                                             |               | 6.46         | 5.18           | 6.7        |
| INOLIVE          | 111/2012/00              | 12010-01-12 | INIT LOD           | Joioudy          | Joinan Wave      | 1013     | וויייייייי | 10.0           | lo<br>I  | <u> -</u> | 10.04          | 110.1    | 10.00                                            | <u></u>       | JO. TO       | 10.10          | 10.1       |

| Project          | Works                    | Date       | Tide                   | Weather          | Sea<br>Condition | Stat     | Level             | Water<br>Depth | Lev_Cod | Replicate  | Time  | Temp(°C)     | рН   | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)      |
|------------------|--------------------------|------------|------------------------|------------------|------------------|----------|-------------------|----------------|---------|------------|-------|--------------|------|---------------|--------------|----------------|---------------|
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       | SR8      | Surface           | 1              | 1       | 1          | 17:23 | 18           | 7.97 | 28            | 6.63         | 4.97           | 5.9           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | _                | Small Wave       | SR8      | Surface           | 1              | 1       | 2          | 17:23 | 18.1         | 7.98 | 28.5          | 6.68         | 4.93           | 5.7           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       | SR8      | Middle            |                | 2       | 1          | 17:23 |              |      |               |              |                |               |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       | SR8      | Middle            |                | 2       | 2          | 17:23 |              |      |               |              |                |               |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       | SR8      | Bottom            | 3.6            | 3       | 1          | 17:23 | 18.1         | 8.02 | 28.6          | 6.58         | 5.21           | 6.2           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           |                  |          | Bottom            | 3.6            | 3       | 2          | 17:23 | 18           | 8.01 | 28.7          | 6.61         | 5.19           | 6.4           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  |                  |          | Surface           | 1              | 1       | 1          | 17:10 | 18.1         | 7.98 | 28.5          | 6.79         | 4.92           | 5.9           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  |                  |          | Surface           | 1              | 1       | 2          | 17:10 | 18           | 7.99 | 28.6          | 6.83         | 4.97           | 5.6           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           |                  |          | Middle            |                | 2       | 1          | 17:10 |              |      |               |              |                |               |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  |                  |          | Middle            |                | 2       | 2          | 17:10 |              |      |               |              |                |               |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  | Small Wave       |          | Bottom            | 4.3            | 3       | 1          | 17:10 | 18.1         | 7.99 | 29            | 6.38         | 5.17           | 6.3           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  |                  |          | Bottom            | 4.3            | 3       | 2          | 17:10 | 18.2         | 8    | 28.9          | 6.33         | 5.2            | 6.4           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       |          | Surface           | 1              | 1       | 1          | 18:05 | 18           | 7.99 | 28.6          | 6.79         | 5.08           | 6.1           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  | Small Wave       |          | Surface           | 1              | 1       | 2          | 18:05 | 17.9         | 7.98 | 28.7          | 6.72         | 5.11           | 6.3           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  | Small Wave       |          | Middle            | 5.9            | 2       | 1          | 18:05 | 18           | 8.01 | 29            | 6.63         | 5.06           | 6             |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  | Small Wave       |          | Middle            | 5.9            | 2       | 2          | 18:05 | 18.1         | 8    | 29.1          | 6.66         | 5.09           | 5.8           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                | Cloudy           | Small Wave       |          | Bottom            | 10.7           | 3       | 1          | 18:05 | 18.2         | 8.02 | 29.3          | 6.62         | 5.07           | 6.2           |
| TMCLKL           | HY/2012/08               | 2015-01-12 | Mid-Ebb                |                  |                  |          | Bottom            | 10.7           | 3       | <u> 2</u>  | 18:05 | 18.1         | 8.3  | 29.2          | 6.59         | 5.12           | 6.4           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              |                  | Small Wave       |          | Surface           | 1              | 1       | 1          | 14:00 | 18.2         | 8.1  | 28.8          | 6.8          | 5.09           | 6.1           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 11      | 2          | 14:00 | 18.1         | 8.09 | 28.7          | 6.83         | 5.01           | 6.2           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Middle            | 11.4           | 2       | 10         | 14:00 | 18.3         | 8.09 | 29            | 6.53         | 6.04           | 7.1           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Middle            | 11.4           | 2       | 2          | 14:00 | 18.2         |      | 29.1          | 6.5          | 6.08           | 7.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 21.8           | 3       | 10         | 14:00 | 18.3         |      | 29.2          | 6.29         | 6.12           | 7.4           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 21.8           | 3       | 2          | 14:00 | 18.3         | 8.1  | 29.2          | 6.25         | 6.15           | 7.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           | Small Wave       |          | Surface           |                |         | 10         | 11:19 | 18.1         | 8.03 | 28.6          | 6.94         | 5.02           | 6.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           | Small Wave       |          | Surface           | <br>  E - 7    | 0       | 2          | 11:19 | 18.2         | 8.02 | 28.7          | 6.9          | 5.1            | 6.2<br>6.7    |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           | Small Wave       | -        | Middle            | 5.7            | 2       | 10         | 11:19 | 18.2         |      | 28.9          | 6.57         | 5.37           |               |
|                  | HY/2012/08               |            |                        |                  |                  |          |                   | 5.7            | 2       | 1          | 11:19 | 18.2         |      | 29            | 6.54         | 5.35           | 6.4           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 10.4           | 3       | 10         | 11:19 | 18.2         |      | 29            | 6.43<br>6.47 | 5.68<br>5.65   | 6.6<br>6.9    |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-14 | Mid-Flood<br>Mid-Flood | Cloudy<br>Cloudy |                  |          | Bottom<br>Surface | 10.4           | 1       | 1          | 11:19 | 18.2<br>18.1 |      | 29.1<br>28.7  | 6.94         | 5.15           | 6.9           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 2          | 13:24 | 18.2         | 8.1  | 28.7          | 6.9          | 5.1            | 6.2           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Middle            | 7.1            | 2       | 1          | 13:24 | 18.2         | +    | 29            | 6.74         | 6.04           | 7.1           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Middle            | 7.1            | 2       | 2          | 13:24 | 18.3         | +    | 28.9          | 6.77         | 6.09           | 7.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 13.2           | 3       | 1          | 13:24 | 18.3         | _    | 29.1          | 6.68         | 5.99           | 6.8           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 13.2           | 3       | 2          | 13:24 | 18.2         | +    | 29.2          | 6.65         | 5.95           | 6.7           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 1          | 13:05 | 18.1         |      | 28.7          | 6.71         | 5.21           | 6.4           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 2          | 13:05 | 18.2         | +    | 28.7          | 6.75         | 5.17           | 6.1           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 5.6            | 2       | 1          | 13:05 | 18.2         |      | 29            | 6.61         | 5.62           | 6.6           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 5.6            | 2       | 2          | 13:05 | 18.2         | +    | 29.1          | 6.63         | 5.58           | 6.7           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 10.2           | 3       | 1          | 13:05 | 18.2         |      | 29.1          | 6.43         | 5.78           | 6.7           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 10.2           | 3       | 2          | 13:05 | 18.3         |      | 29.1          | 6.4          | 5.75           | 6.5           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 1 <u>-</u> | 13:40 | 18.2         | 8.1  | 28.7          | 6.89         | 5.27           | 6.1           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 2          | 13:40 | 18.2         | 8.1  | 28.8          | 6.85         | 5.3            | 6.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 8.2            | 2       | 1          | 13:40 | 18.3         | +    | 29            | 6.62         | 6.17           | 7.1           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 8.2            | 2       | 2          | 13:40 | 18.3         |      | 29.1          | 6.65         | 6.14           | 7.3           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Bottom            | 15.4           | 3       | 1          | 13:40 | 18.3         |      | 29.1          | 6.55         | 6.23           | 7.4           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 15.4           | 3       | 2          | 13:40 | 18.3         | -    | 29.2          | 6.58         | 6.2            | 7.7           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  | <b>!</b> | Surface           | 1              | 1       | 1          | 12:50 | 18.2         |      | 28.7          | 6.88         | 5.38           | 6.1           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  | <b>!</b> | Surface           | 1              | 1       | 2          | 12:50 | 18.1         | 8.09 |               | 6.84         | 5.35           | 6.4           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 5.7            | 2       | 1          | 12:50 | 18.2         | 8.09 |               | 6.49         | 5.77           | 6.7           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           | Small Wave       | IS15     | Middle            | 5.7            | 2       | 2          | 12:50 | 18.2         | 8.08 |               | 6.45         | 5.75           | 6.9           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          |                   | 10.4           | 3       | 1          | 12:50 | 18.2         |      | 29.1          | 6.38         | 5.81           | 6.7           |
|                  | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  | IS15     |                   | 10.4           | 3       | 2          | 12:50 | 18.2         | 8.09 |               | 6.35         | 5.85           | 6.5           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  |          | Surface           | 1              | 1       | 1          | 12:20 | 18.1         |      | 28.6          | 6.84         | 4.97           | 5.9           |
| TMCLKL           | HY/2012/08               | 2015-01-14 | Mid-Flood              | Cloudy           |                  | 1        | Surface           | 1              | 1       | 2          | 12:20 | 18.1         |      | 28.7          | 6.8          | 4.94           | 5.7           |
|                  | HY/2012/08               |            | Mid-Flood              |                  |                  |          | Middle            |                | 2       | 1          | 12:20 |              | Ĺ    |               |              |                |               |
|                  |                          |            |                        |                  | Small Wave       |          | Middle            |                | 2       | 2          | 12:20 |              | 1    | 1             |              |                | $\overline{}$ |

| Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|---------|------------------|------|---------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR8  | Bottom  | 4.2            | 3       | 1         | 12:20 | 18.2     | 8.07 | 28.9          | 6.62     | 5.81           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR8  | Bottom  | 4.2            | 3       | 2         | 12:20 | 18.2     | 8.06 | 28.8          | 6.59     | 5.77           | 7        |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR9  | Surface | 1              | 1       | 1         | 12:35 | 18.1     | 8.08 | 28.7          | 6.75     | 5.27           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR9  | Surface | 1              | 1       | 2         | 12:35 | 18       | 8.07 | 28.7          | 6.78     | 5.3            | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR9  | Middle  |                | 2       | 1         | 12:35 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       | SR9  | Middle  |                | 2       | 2         | 12:35 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  |                  |      | Bottom  | 4.6            | 3       | 1         | 12:35 | 18.2     | 8.08 | 29            | 6.54     | 5.94           | 6.9      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       |      | Bottom  | 4.6            | 3       | 2         | 12:35 | 18.2     | 8.08 | 29            | 6.57     | 5.9            | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       |      | Surface | 1              | 1       | 1         | 11:52 | 18.1     | 8.04 | 28.7          | 6.77     | 4.77           | 5.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | ,       | Small Wave       |      | Surface | 1              | 1       | 2         | 11:52 | 18       | 8.05 | 28.7          | 6.74     | 4.7            | 5.6      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       |      | Middle  | 6.3            | 2       | 1         | 11:52 | 18.2     | 8.05 | 28.9          | 6.57     | 5.37           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | ,       | Small Wave       |      | Middle  | 6.3            | 2       | 2         | 11:52 | 18.2     | 8.05 | 28.9          | 6.54     | 5.33           | 6.5      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | Cloudy  | Small Wave       |      | Bottom  | 11.6           | 3       | 1         | 11:52 | 18.2     | 8.05 | 29            | 6.5      | 5.49           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Flood | ,       | Small Wave       |      | Bottom  | 11.6           | 3       | 2         | 11:52 | 18.3     | 8.06 | 29            | 6.53     | 5.42           | 6.9      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 1         | 18:20 | 18       | 8    | 28.7          | 6.78     | 4.98           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 18:20 | 18       | 8    | 28.8          | 6.77     | 4.95           | 5.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       |      | Middle  | 11.3           | 2       | 1         | 18:20 | 18.1     | 8.02 | 28.9          | 6.7      | 5.22           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         |                  |      | Middle  | 11.3           | 2       | 2         | 18:20 | 18.2     | 8.01 | 29            | 6.73     | 5.24           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      | Bottom  | 21.5           | 3       | 1         | 18:20 | 18.2     | 8.03 | 29.1          | 6.63     | 5.31           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         | Small Wave       |      | Bottom  | 21.5           | 3       | 2         | 18:20 | 18.2     | 8.05 | 29.1          | 6.62     | 5.34           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 1         | 21:00 | 18       | 8    | 28.7          | 6.84     | 4.87           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 2         | 21:00 | 18.1     | 8.01 | 28.8          | 6.8      | 4.85           | 5.9      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       | CS6  | Middle  | 5.6            | 2       | 1         | 21:00 | 18.2     | 8.03 | 28.8          | 6.74     | 4.94           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         | Small Wave       | CS6  | Middle  | 5.6            | 2       | 2         | 21:00 | 18.2     | 8.05 | 28.9          | 6.77     | 4.97           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       |      | Bottom  | 10.2           | 3       | 1         | 21:00 | 18.2     | 8.06 | 29            | 6.56     | 5.04           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       | -    | Bottom  | 10.2           | 3       | 2         | 21:00 | 18.3     | 8.07 | 29.1          | 6.59     | 5.08           | 6.5      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Surface | 1              | 1       | 1         | 19:00 | 18       | 7.98 | 28.7          | 6.8      | 5.12           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | _         |         | Small Wave       | IS12 | Surface | 1              | 1       | 2         | 19:00 | 18       | 7.99 | 28.8          | 6.78     | 5.14           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS12 | Middle  | 7              | 2       | 1         | 19:00 | 18.1     | 8.01 | 28.9          | 6.7      | 5.32           | 6.4      |
|         | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      | Middle  | 7              | 2       | 2         | 19:00 | 18.2     |      | 28.9          | 6.74     | 5.3            | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         |                  |      |         | 13             | 3       | 1         | 19:00 | 18.2     |      | 29            | 6.64     | 5.28           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      | Bottom  | 13             | 3       | 2         | 19:00 | 18.2     | 8.05 | 29.1          | 6.68     | 5.25           | 6        |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS13 | Surface | 1              | 1       | 1         | 19:20 | 18.1     | 8    | 28.7          | 6.82     | 5              | 6.2      |
| -       | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      | Surface | 1              | 1       | 2         | 19:20 | 18.1     |      | 28.7          | 6.86     | 5.03           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      |         | 5.5            | 2       | 1         | 19:20 | 18.1     |      | 28.8          | 6.73     | 5.17           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-14 |           | Fine    |                  | IS13 |         | 5.5            | 2       | 2         | 19:20 | 18.2     |      | 28.9          | 6.77     | 5.2            | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      |         | 10             | 3       | 1         | 19:20 | 18.2     |      |               | 6.65     | 5.32           | 6.4      |
|         | HY/2012/08 | 2015-01-14 |           | Fine    |                  |      |         | 10             | 3       | 2         | 19:20 | 18.3     |      | 29            | 6.6      | 5.36           | 6.7      |
|         | HY/2012/08 | 2015-01-14 | Mid-Ebb   |         |                  | IS14 | Surface | 1              | 1       | 1         | 18:40 | 18       | 7.98 | 28.8          | 6.84     | 5.06           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-14 |           | Fine    |                  | IS14 | Surface | 1              | 1       | 2         | 18:40 | 18.1     | 8    | 28.8          | 6.81     | 5.07           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      |         | 8.3            | 2       | 1         | 18:40 | 18.2     |      | 28.9          | 6.77     | 5.12           | 6.2      |
|         | HY/2012/08 | 2015-01-14 |           | Fine    |                  |      |         | 8.3            | 2       | 2         | 18:40 | 18.2     |      | 29            | 6.75     | 5.14           | 6.3      |
|         | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      |         | 15.6           | 3       | 1         | 18:40 | 18.2     |      |               | 6.54     | 5.27           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 |           | Fine    |                  |      |         | 15.6           | 3       | 2         | 18:40 | 18.3     | 8.05 | 29.1          | 6.6      | 5.3            | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS15 | Surface | 1              | 1       | 1         | 19:40 | 18       | 8    | 28.8          | 6.7      | 5.06           | 5.8      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS15 | Surface | 1              | 1       | 2         | 19:40 | 18.1     | 8.01 | 28.7          | 6.75     | 5.09           | 5.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      |         | 5.6            | 2       | 1         | 19:40 | 18.2     |      | 28.9          | 6.64     | 5.24           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS15 | Middle  | 5.6            | 2       | 2         | 19:40 | 18.1     |      | 28.9          | 6.68     | 5.26           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS15 |         | 10.1           | 3       | 1         | 19:40 | 18.2     |      | 29            | 6.59     | 5.53           | 6.6      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | IS15 | Bottom  | 10.1           | 3       | 2         | 19:40 | 18.2     | 8.03 | 29.1          | 6.56     | 5.54           | 6.8      |
|         | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | SR8  | Surface | 1              | 1       | 1         | 20:21 | 18       | 8    | 28.8          | 6.89     | 5.02           | 6.1      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | SR8  | Surface | 1              | 1       | 2         | 20:21 | 18       | 7.99 | 28.7          | 6.84     | 5.04           | 6.3      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | SR8  | Middle  |                | 2       | 1         | 20:21 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | SR8  | Middle  |                | 2       | 2         | 20:21 |          |      |               |          |                |          |
|         | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  |      | Bottom  | 4              | 3       | 1         | 20:21 | 18.2     |      | 28.9          | 6.7      | 4.9            | 5.9      |
| TMCLKL  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    |                  | SR8  | Bottom  | 4              | 3       | 2         | 20:21 | 18.1     |      | 28.9          | 6.72     | 4.87           | 6.2      |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 20:00 | 18       | 7.99 | 28.7          | 6.84     | 5.02           | 6.3      |
| TMCLKI  | HY/2012/08 | 2015-01-14 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Surface | 1              | <br> 1  | 2         | 20:00 | 18       | 8    | 28.8          | 6.87     | 5.07           | 6.2      |

| Project          | Works                    | Date                     | Tide                   | IVVeather | Sea                  | Stat  | Level             | Water        | Lev_Cod | Replicate | Time           | Temp(°C)     | рН           | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|--------------------------|------------------------|-----------|----------------------|-------|-------------------|--------------|---------|-----------|----------------|--------------|--------------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           | Condition Small Wave | SR9   | Middle            | Depth        | 2       | 1         | 20:00          | +            | ┼—           |               | +            |                | +          |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           |                      |       | Middle            |              | 2       | 2         | 20:00          | †            | +            |               | +            |                | +          |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           |                      |       |                   | 4.2          | 3       | 1         | 20:00          | 18.2         | 8.01         | 28.8          | 6.71         | 5.14           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           |                      |       |                   | 4.2          | 3       | 2         | 20:00          | 18.1         | 8.02         | 29            | 6.74         | 5.18           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           | Small Wave           |       | Surface           | 1            | 1       | 1         | 20:41          | 18           |              | 28.8          | 6.71         | 4.94           | 5.8        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                | Fine      | Small Wave           | SR10A | Surface           | 1            | 1       | 2         | 20:41          | 18           | 8            | 28.8          | 6.73         | 4.95           | 5.7        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                | Fine      | Small Wave           | SR10A | Middle            | 6.2          | 2       | 1         | 20:41          | 18.1         | 8.01         | 28.9          | 6.62         | 4.87           | 5.9        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                | Fine      | Small Wave           | SR10A | Middle            | 6.2          | 2       | 2         | 20:41          | 18.1         | 8.02         | 28.9          | 6.64         | 4.85           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                | Fine      | Small Wave           |       | Bottom            | 11.3         | 3       | 1         | 20:41          | 18.2         | 8.03         | 29            | 6.51         | 4.76           | 5.8        |
| TMCLKL           | HY/2012/08               | 2015-01-14               | Mid-Ebb                |           |                      |       | Bottom            | 11.3         | 3       | 2         | 20:41          | 18.2         |              | 29.1          | 6.54         | 4.74           | 5.6        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 15:50          | 18.1         | 7.94         | 28.2          | 7.45         | 5.75           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 2         | 15:50          | 18.1         |              | 28.3          | 7.41         | 5.7            | 6.6        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | 10.9         | 2       | 1         | 15:50          | 18.1         | 7.99         | 28.4          | 7.33         | 5.96           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | 10.9         | 2       | 2         | 15:50          | 18.2         | 8            | 28.4          | 7.3          | 6              | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Bottom            | 20.8         | 3       | 1         | 15:50          | 18.2         | 8.01         | 28.5          | 7.06         | 6.17           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Bottom            | 20.8         | 3       | 2         | 15:50          | 18.2         |              | 28.6          | 7.03         | 6.12           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           |              |         | 1         | 13:04          | 17.8         |              | 27.4          | 7.37         | 6.51           | 7.6        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-16               | Mid-Flood<br>Mid-Flood |           |                      |       | Surface<br>Middle | 6 1          | 2       | <u> </u>  | 13:04<br>13:04 | 17.8<br>17.8 | 8.04<br>8.01 | 27.5<br>27.5  | 7.41<br>7.33 | 6.44           | 7.4<br>7.5 |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | 6.1          | 2       | 2         | 13:04          | 17.8         |              | 27.5          | 7.33         | 6.36           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Bottom            | 11.2         | 3       | 1         | 13:04          | 17.9         |              | 27.7          | 7.24         | 6.62           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Bottom            | 11.2         | 3       | 2         | 13:04          | 18           |              | 27.8          | 7.22         | 6.74           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 15:11          | 18           | 7.97         | 28.1          | 7.23         | 5.48           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 2         | 15:11          | 18.1         | 7.98         | 28.2          | 7.21         | 5.54           | 6.2        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | 7.4          | 2       | 1         | 15:11          | 18.1         |              | 28.3          | 7.09         | 5.76           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | 7.4          | 2       | 2         | 15:11          | 18.1         | 7.96         | 28.3          | 7.12         | 5.81           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Bottom            | 13.8         | 3       | 1         | 15:11          | 18.1         |              | 28.4          | 7            | 5.66           | 6.4        |
|                  | HY/2012/08               | 2015-01-16               |                        |           |                      |       |                   | 13.8         | 3       | 2         | +              | 18.2         |              | 28.5          | 6.97         | 5.6            | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 14:51          | 17.9         |              | 28            | 7.42         | 5.33           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | IS13  | Surface           | 1            | 1       | 2         | 14:51          | 17.9         | 7.95         | 28.1          | 7.44         | 5.41           | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | IS13  | Middle            | 5.8          | 2       | 1         | 14:51          | 17.9         | 7.99         | 28.1          | 7.38         | 5.56           | 6.6        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | IS13  | Middle            | 5.8          | 2       | 2         | 14:51          | 17.9         | 8            | 28.2          | 7.35         | 5.5            | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | IS13  | Bottom            | 10.6         | 3       | 1         | 14:51          | 17.9         | 8.01         | 28.4          | 7.21         | 5.71           | 6.8        |
| TMCLKL           | HY/2012/08               |                          | Mid-Flood              |           |                      | IS13  | Bottom            | 10.6         | 3       | 2         | 14:51          | 18           |              | 28.4          | 7.18         | 5.77           | 7          |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 15:30          | 18.1         | 7.99         | 28.2          | 7.3          | 5.62           | 6.6        |
| TMCLKL           | HY/2012/08               |                          | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 2         | 15:30          | 18.1         | 8            | 28.2          | 7.34         | 5.68           | 6.4        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       |                   | 8.3          | 2       | 1         | 15:30          | 18.1         |              | 28.2          | 7.26         | 5.93           | 7.1        |
|                  | HY/2012/08               |                          | Mid-Flood              |           |                      |       |                   | 8.3          | 2       | 2         | 15:30          | 18.1         |              | 28.3          | 7.23         | 5.85           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       |                   | 15.6         | 3       | 1         | 15:30          | 18.2         |              | 28.5          | 7.16         | 5.78           | 6.7        |
| TMCLKL           | HY/2012/08               |                          | Mid-Flood              |           |                      |       |                   | 15.6         | 3       | 2         | 15:30          | 18.2         |              | 28.5          | 7.13         | 5.87           | 6.9        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | <br> -       | 1       | 1         | 14:30          | 17.8         |              | 28            | 7.41         | 5.18           | 6.1        |
|                  | HY/2012/08               |                          | Mid-Flood              |           |                      |       | Surface           | l<br>  5 7   | 2       | 1         | 14:30          | 17.9         | 8.02         |               | 7.37         | 5.25           | 6.3        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood<br>Mid-Flood |           |                      |       |                   | 5.7<br>5.7   | 2       | 2         | 14:30<br>14:30 | 17.9<br>17.9 |              | 28.1          | 7.34<br>7.32 | 5.63<br>5.55   | 6.4<br>6.6 |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-16<br>2015-01-16 | Mid-Flood              |           |                      |       |                   | 10.4         | 2       | 1         | 14:30          | 18           |              | 28.2<br>28.3  | 7.24         | 5.84           | 6.8        |
|                  | HY/2012/08               |                          | Mid-Flood              |           |                      |       |                   | 10.4         | 3       | 2         | 14:30          | 18           |              | 28.4          | 7.24         | 5.92           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 13:58          | 17.8         |              | 27.5          | 7.6          | 5.58           | 6.7        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 2         | 13:58          | 17.8         | 7.99         |               | 7.57         | 5.66           | 6.5        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | <del> </del> | 2       | 1         | 13:58          | 15           | 1            | 1             | 1.0.         | 1.00           | 15.5       |
|                  | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Middle            | <u> </u>     | 2       | 2         | 13:58          |              | 1            |               |              |                | +          |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       |                   | 4.8          | 3       | 1         | 13:58          | 17.8         | 8.01         | 27.6          | 7.51         | 5.94           | 7.1        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       |                   | 4.8          | 3       | 2         | 13:58          | 17.8         | _            | 27.7          | 7.48         | 6.03           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 1         | 14:12          | 17.8         |              | 27.9          | 7.55         | 5.48           | 6.2        |
|                  | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      |       | Surface           | 1            | 1       | 2         | 14:12          | 17.8         | 8.05         |               | 7.53         | 5.4            | 6.1        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | SR9   | Middle            |              | 2       | 1         | 14:12          |              |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              |           |                      | SR9   | Middle            |              | 2       | 2         | 14:12          |              |              |               |              |                |            |
|                  | HY/2012/08               |                          | Mid-Flood              |           |                      |       |                   | 4.4          | 3       | 1         | 14:12          |              | 8            | 28.2          | 7.47         | 5.73           | 6.8        |
| TMCLKL           | HY/2012/08               | 2015-01-16               | Mid-Flood              | Fine      | Small Wave           | SR9   | Bottom            | 4.4          | 3       | 2         | 14:12          | 17.9         | 8.01         | 28.3          | 7.44         | 5.8            | 6.7        |

| Project | Works      | Date       | Tide      | IVVESTNER | Sea<br>Condition | Stat  | Level        | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C)                                         | рН       | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|-----------|------------------|-------|--------------|----------------|---------|-----------|-------|--------------------------------------------------|----------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood | Fine      | Small Wave       | SR10A | Surface      | 1              | 1       | 1         | 13:30 | 17.8                                             | 7.94     | 27.4          | 7.6      | 6.39           | 7.2      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood | Fine      | Small Wave       | SR10A | Surface      | 1              | 1       | 2         | 13:30 | 17.7                                             | 7.95     | 27.4          | 7.65     | 6.45           | 7.4      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood | Fine      | Small Wave       | SR10A | Middle       | 6.5            | 2       | 1         | 13:30 | 17.8                                             | 7.97     | 27.4          | 7.5      | 6.5            | 7.5      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood | Fine      | Small Wave       | SR10A | Middle       | 6.5            | 2       | 2         | 13:30 | 17.8                                             | 7.97     | 27.5          | 7.53     | 6.43           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood |           | Small Wave       | SR10A | Bottom       | 12             | 3       | 1         | 13:30 | 17.8                                             | 7.99     | 27.5          | 7.38     | 6.63           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Flood |           |                  | SR10A | Bottom       | 12             | 3       | 2         | 13:30 | 17.9                                             | 8        | 27.6          | 7.4      | 6.69           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS4   | Surface      | 1              | 1       | 1         | 07:55 | 17.8                                             | 7.92     | 28.1          | 7.38     | 5.83           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       |       | Surface      | 1              | 1       | 2         | 07:55 | 17.7                                             | 7.93     | 28.2          | 7.33     | 5.87           | 6.5      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | CS4   | Middle       | 10.8           | 2       | 1         | 07:55 | 17.7                                             | 7.96     | 28.3          | 7.29     | 5.98           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | CS4   | Middle       | 10.8           | 2       | 2         | 07:55 | 17.8                                             | 7.97     | 28.2          | 7.25     | 6.07           | 7.3      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | CS4   | Bottom       | 20.5           | 3       | 1         | 07:55 | 18                                               | 7.99     | 28.4          | 7.01     | 6.21           | 7.4      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | CS4   | Bottom       | 20.5           | 3       | 2         | 07:55 | 17.9                                             | 7.98     | 28.5          | 6.94     | 6.26           | 7.2      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS6   | Surface      | 1              | 1       | 1         | 09:53 | 17.6                                             | 8.01     | 27.3          | 7.28     | 6.58           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS6   | Surface      | 1              | 1       | 2         | 09:53 | 17.7                                             | 8        | 27.4          | 7.32     | 6.49           | 7.3      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS6   |              | 5.9            | 2       | 1         | 09:53 | 17.7                                             | 8.02     | 27.4          | 7.27     | 6.38           | 7.4      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS6   | Middle       | 5.9            | 2       | 2         | 09:53 | 17.6                                             | 8.03     | 27.5          | 7.22     | 6.44           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | CS6   | Bottom       | 10.9           | 3       | 1         | 09:53 | 17.8                                             | 8.04     | 27.9          | 7.17     | 6.68           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | CS6   | Bottom       | 10.9           | 3       | 2         | 09:53 | 17.7                                             |          | 27.8          | 7.13     | 6.78           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Surface      | 1              | 1       | 1         | 08:28 | 17.7                                             | -        | 27.9          | 7.18     | 5.52           | 6.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Surface      | 1              | 1       | 2         | 08:28 | 17.8                                             | 7.99     | 27.9          | 7.13     | 5.59           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Middle       | 7.3            | 2       | 1         | 08:28 | 17.9                                             | 7.93     | 28.2          | 7.01     | 5.85           | 6.9      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Middle       | 7.3            | 2       | 2         | 08:28 | 17.8                                             | 7.94     | 28.1          | 7.03     | 5.88           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Bottom       | 13.6           | 3       | 1         | 08:28 | 18                                               | 7.96     | 28.3          | 6.96     | 5.68           | 6.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS12  | Bottom       | 13.6           | 3       | 2         | 08:28 | 18.1                                             | 7.97     | 28.4          | 6.91     | 5.74           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | IS13  | Surface      | 1              | 1       | 1         | 08:45 | 17.6                                             | 7.92     | 28            | 7.38     | 5.36           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | IS13  | Surface      | 1              | 1       | 2         | 08:45 | 17.7                                             | 7.93     | 28            | 7.34     | 5.43           | 6.2      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           | Small Wave       | IS13  | Middle       | 5.7            | 2       | 1         | 08:45 | 17.8                                             | 7.96     | 28            | 7.31     | 5.61           | 6.6      |
|         |            |            |           |           |                  | IS13  |              | 5.7            | 2       | 2         | 08:45 |                                                  | 7.95     |               | 7.26     | 5.57           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS13  |              | 10.4           | 3       | 1         | 08:45 | 17.7                                             | -        | 28.2          | 7.16     | 5.82           | 6.8      |
|         | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS13  |              | 10.4           | 3       | 2         | 08:45 | 17.8                                             |          | 28.3          | 7.1      | 5.86           | 7        |
|         | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS14  | Surface      | 1              | 1       | 1         | 08:12 | 17.7                                             | -        | 28.1          | 7.22     | 5.76           | 6.7      |
|         | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS14  | Surface      | 1              | 1       | 2         | 08:12 | 17.8                                             | -        | 28            | 7.26     | 5.72           | 6.9      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS14  |              | 8.1            | 2       | 1         | 08:12 | 17.9                                             |          | 28.3          | 7.21     | 5.95           | 7.1      |
|         | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS14  |              | 8.1            | 2       | 2         | 08:12 | 17.8                                             |          | 28.3          | 7.18     | 6.01           | 7.3      |
| TMCLKL  | HY/2012/08 | 2015-01-16 |           |           |                  | IS14  |              | 15.2           | 3       | 1         | 08:12 | 17.6                                             | -        | 28.4          | 7.12     | 5.82           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-16 |           |           |                  | IS14  | 1            | 15.2           | 3       | 2         | 08:12 | 17.7                                             |          | 28.3          | 7.07     | 5.89           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | IS15  | Surface      | 1              | 1       | 1         | 09:01 | 17.7                                             | -        | 28            | 7.38     | 5.39           | 6.4      |
|         | HY/2012/08 | 2015-01-16 |           |           |                  | IS15  | Surface      | 1              | 1       | 2         | 09:01 | 17.6                                             | 7.93     |               | 7.32     | 5.47           | 6.3      |
|         | HY/2012/08 |            |           |           |                  | IS15  |              | 5.6            | 2       | 1         | 09:01 | 17.6                                             | -        | 28.1          | 7.31     | 5.67           | 6.7      |
| TMCLKL  | HY/2012/08 | 2015-01-16 |           |           |                  | IS15  |              | 5.6            | 2       | 2         | 09:01 | 17.7                                             | +        | +             | 7.26     | 5.58           | 6.8      |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   |           |                  | IS15  | +            | 10.2           | 3       | 1         | 09:01 | 17.6                                             |          | 28.2          | 7.17     | 5.76           | 6.6      |
|         | HY/2012/08 | 2015-01-16 |           |           |                  | IS15  | 1            | 10.2           | 3       | 2         | 09:01 | 17.5                                             |          | 28.3          | 7.13     | 5.82           | 6.9      |
|         | HY/2012/08 |            | Mid-Ebb   |           |                  | SR8   | Surface      | 1              | [1      | [1        | 09:38 | 17.4                                             |          | 27.4          | 7.51     | 5.63           | 6.4      |
| TMCLKL  | HY/2012/08 | 2015-01-16 |           |           |                  | SR8   | Surface      | 1              | 1       | 2         | 09:38 | 17.5                                             | 7.97     | 27.5          | 7.48     | 5.7            | 6.2      |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   |           |                  | SR8   | Middle       |                | 2       | 1         | 09:38 | <u> </u>                                         | <u> </u> |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR8   | Middle       |                | 2       | 2         | 09:38 | 1                                                | <u> </u> |               | <u> </u> |                | <u> </u> |
|         | HY/2012/08 |            |           |           |                  | SR8   | <del>1</del> | 4.6            | 3       | [1        | 09:38 | 17.6                                             | -        | 27.5          | 7.47     | 6.08           | 7.1      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR8   | <del>1</del> | 4.6            | 3       | 2         | 09:38 | 17.7                                             | 7.99     |               | 7.42     | 5.99           | 7.3      |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   |           |                  | SR9   | Surface      | 1              | 1       | 1         | 09:21 | 17.5                                             | _        | 27.9          | 7.47     | 5.53           | 6.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR9   | Surface      | 1              | 1       | 2         | 09:21 | 17.6                                             | 8.03     | 27.8          | 7.42     | 5.58           | 6.7      |
|         | HY/2012/08 |            | Mid-Ebb   |           |                  | SR9   | Middle       |                | 2       | 1         | 09:21 | <del>                                     </del> | <u> </u> |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR9   | Middle       | 1              | 2       | 2         | 09:21 | 1                                                | <u> </u> |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR9   | +            | 4.2            | 3       | [1        | 09:21 | 17.7                                             |          | 28.2          | 7.42     | 5.83           | 6.8      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  | SR9   | +            | 4.2            | 3       | 2         | 09:21 | 17.6                                             | 8.01     | 28.1          | 7.39     | 5.88           | 7.1      |
|         | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  |       | Surface      | 1              | 1       | 1         | 10:14 | 17.5                                             | +        | 27.3          | 7.53     | 6.47           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   |           |                  |       | Surface      | 1              | 1       | 2         | 10:14 | 17.6                                             | 7.9      | 27.2          | 7.55     | 6.41           | 7.2      |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   |           |                  |       |              | 6.4            | 2       | 1         | 10:14 | 17.7                                             |          | 27.3          | 7.48     | 6.56           | 6.6      |
| TMCLKL  | HY/2012/08 | 2015-01-16 | Mid-Ebb   | Fine      | Small Wave       | SR10A | Middle       | 6.4            | 2       | [2        | 10:14 | 17.8                                             | 7.94     | 27.4          | 7.44     | 6.49           | 6.7      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project       | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat  | Level                                            | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|-----------|---------|------------------|-------|--------------------------------------------------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-16 | Mid-Ebb   | Fine    | Small Wave       | SR10A | Bottom                                           | <del>-</del>   | 3       | 1         | 10:14 | 17.7     | 7.96 | 27.7          | 7.33     | 6.69           | 7.4      |
| Triggraph   Trig  |               | HY/2012/08 |            |           | Fine    | Small Wave       |       | Bottom                                           | 11.8           | 3       | 2         | 10:14 | 17.6     | 7.97 | 27.6          |          |                |          |
| Include   Provided    | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Surface                                          | 1              | 1       | 1         | 18:47 | 17.1     | 7.93 | 27.5          | 7.37     | 7.24           | 8.3      |
| TRICKLK   Pro201289   2019-0-10   Mid-Ploco   Fine   Small Wave   CS4   Septem   O.4   3   1   84.7   17.5   7.91   27.7   7.22   7.61   8.5   170.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0   7.0  | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Surface                                          | 1              | 1       | 2         | 18:47 | 17.2     | 7.94 | 27.6          | 7.32     | 7.31           | 8.5      |
| TRICKLE, INVESTIGED   2016   119   Mod Flood   Free   Small Wave   CS4   Relation   20.4   3   1   10.47   17.5   7.91   17.8   7.81   8.9   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00    | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Middle                                           | 10.7           | 2       | 1         | 18:47 | 17.3     | 7.95 | 27.8          | 7.18     | 7.48           | 8.8      |
| TRCLIC   Vivipi 2008   2015 0.1 10   Mod Flood   Firm   Small Wave   C645   Surface   1   1   1   10:13   7.4   7.55   7.56   7.64   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Middle                                           | 10.7           | 2       | 2         | 18:47 | 17.2     | 7.94 | 27.7          | 7.22     | 7.41           | 8.6      |
| TRCKER   PRYSPER   Mod Floor   Fine   Small Wave   GSB   Subtree   1   1   161.0   17.4   7.65   27.5   7.50   7.50   7.50   7.50   1.73   6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Bottom                                           | 20.4           | 3       | 1         | 18:47 | 17.5     | 7.91 | 27.9          | 7.42     | 7.81           | 8.9      |
| TRCLEAN   WYS012006   2016 011   Mal Flood   Fine   Small Wave   GS6   Motion   1   2   1613   17.8   7.8   27.6   7.61   7.33   8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS4   | Bottom                                           | 20.4           | 3       | 2         | 18:47 | 17.4     | 7.92 | 27.8          | 7.39     | 7.84           | 9.1      |
| TRACKER   MY-201208   2015-01-19   Mol-Flood   Fine   Small Wave   CS8   Middle   5.7   2   1   161-3   17.6   7.67   12.77   7.98   7.42   8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS6   | Surface                                          | 1              | 1       | 1         | 16:13 | 17.4     | 7.85 | 27.5          | 7.53     | 7.26           | 8.4      |
| TMCLKL   MY201208   2015-01-19   ModeFood   Fine   Small Wave   CS8   Modele   5.7   2   2   16:13   17.5   7.88   27.8   7.44   7.48   8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | CS6   | Surface                                          | 1              | 1       | 2         | 16:13 | 17.3     | 7.84 | 27.6          | 7.61     | 7.33           | 8.1      |
| TMCLIK.   MY201208   2015-01-19   Mol-Flood   Fine   Small Wave   CS6   Settom   10.4   3   1   16.13   17.7   7.9   27.9   7.89   7.57   8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | HY/2012/08 | 2015-01-19 |           |         |                  |       |                                                  |                |         | 1         | 16:13 |          |      |               |          |                |          |
| Triggle   Program   Prog  | TMCLKL        |            | 2015-01-19 | Mid-Flood | Fine    | Small Wave       |       | Middle                                           | 5.7            | 2       | 2         | 16:13 |          |      |               |          |                |          |
| Tricklik   Progress   | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       |       | Bottom                                           | 10.4           | 3       | 1         | 16:13 | 17.7     |      |               | 7.28     | 7.57           | 8.7      |
| TMCLIK   HY201208   0715-071-09   Mod-Flood   Fine   Small Wave   IS12   Surface   1   2   18:08   17.1   7.88   27.6   7.49   7.32   0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMCLKL        |            | 2015-01-19 |           |         |                  |       | Bottom                                           | 10.4           | 3       | 2         | 16:13 | 17.7     |      |               |          |                |          |
| TMCLIK, HY201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS12   Model   7.4   2   1   18.08   17.4   7.92   27.7   7.33   7.38   9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       |       |                                                  | 1              | 1       | 1         | 18:08 | 17.2     | 7.89 |               |          | 7.41           | 8.3      |
| TMCLK, HY/201208   2015 0-119   Mol-Flood   Fine   Small Wave   S12   Bottom   13.8   3   1   18.09   17.5   7.97   27.7   2.5   7.56   0.3   3   1   17.00   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS12  | Surface                                          | 1              | 1       | 2         | 18:08 | 17.1     | 7.88 |               |          |                |          |
| TMCLIK   HYZ01208   2015-0119   Mid-Flood   Fine   Small Wave   IS12   Bottom   1.8   3   1   15:09   17.5   7.97   27.7   7.25   7.56   8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |            |            |           |         |                  |       |                                                  |                |         | 1         | +     | _        | -    |               |          |                |          |
| TYOLK, K.   MY201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS12   Bottom   1.8   3   2   18.08   17.4   7.98   27.8   7.21   7.5   8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |            |           |         |                  |       |                                                  |                |         | 2         | +     | _        |      |               |          |                |          |
| TRICKLK   H7/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   S13   Surface   1   1   1   17-49   17.3   7.93   27.6   7.27   7.22   8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS12  | Bottom                                           | 13.8           | 3       | 1         | 18:08 | 17.5     | 7.97 | 27.7          | 7.25     | 7.56           | 8.3      |
| TMCLIK   HY201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS13   Surface   1   2   17-98   17-2   7-94   27.5   7.32   7.19   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |            |            |           |         |                  |       |                                                  | 13.8           | 3       | 2         |       |          |      |               |          |                |          |
| TMCLKL   HY201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS13   Midelle   5.7   2   1   17-99   17.3   7.55   27.6   7.19   7.02   8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Surface                                          | 1              | 1       | 1         | 17:49 | 17.3     | 7.93 | 27.6          | 7.27     | 7.22           | 8.2      |
| TMCLIK   HY201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS13   Middle   5.7   2   2   17-94   17.4   7.94   27.5   7.22   7.08   8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Surface                                          | 1              | 1       | 2         | 17:49 | 17.2     | 7.94 | 27.5          | 7.32     | 7.19           | 8        |
| TMCLIK   HY/201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS13   Bottom   10.3   3   1   17-49   17.6   7.98   27.8   7.13   7.42   8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Middle                                           | 5.7            | 2       | 1         | 17:49 | 17.3     | 7.95 | 27.6          | 7.19     | 7.02           | 8.1      |
| TMCILL   HY/201208   2015-01-19   Mid-Flood   Fine   Small Wave   IS14   Surface   1   1   1826   17.2   7.8   27.8   7.7   7.45   8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Middle                                           | 5.7            | 2       | 2         | 17:49 | 17.4     | 7.94 | 27.5          | 7.22     | 7.08           | 8.3      |
| TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Surface 1 1 1 18:26 17.2 7.96 27.6 7.27 7.12 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 1 18:26 17.3 7.97 27.7 7.23 7.23 8.2 2 17.02 17.0 18.1 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 1 18:26 17.3 7.9 27.6 7.18 7.31 8.1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Middle 8.5 2 2 18:26 17.4 7.91 27.7 7.26 7.28 8.4 1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.8 1 18:26 17.4 7.91 27.7 7.26 7.28 8.4 1 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.8 1 18:26 17.4 7.97 27.9 7.33 7.62 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS14 Bottom IS.8 1 18:26 17.5 7.98 28 7.39 7.62 8.7 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 7.01 8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 6.97 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Surface 1 1 1 17:32 17.3 7.99 27.7 7.26 6.97 8.3 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Middle 8.4 2 1 17:32 17.3 7.99 27.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Middle 8.4 2 1 17:32 17.3 7.99 27.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 8.8 1 1 17:32 17.3 7.98 28.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 8.8 1 1 17:32 17.4 7.98 28 7.7 7.21 6.93 7.8 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 8.8 Surface 1 1 1 17:02 17.3 7.98 27.7 7.21 6.93 7.4 7.9 S.5 2.1 7.11 8.4 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 8.8 Surface 1 1 1 17:02 17.3 7.98 27.7 7.3 7.4 8.7 7.4 7.4 8.5 TMCLKL HY/2012/08 2015-01-19 Mid-Flood Fine Small Wave IS15 Bottom 8.8 Surface 1 1 1 17:02 17.4 7.99 27.6 7.3 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 27.8 7.4 7.4 7.5 9.9 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Bottom                                           | 10.3           | 3       | 1         | 17:49 | 17.6     | 7.98 | 27.8          | 7.13     | 7.42           | 8.4      |
| TMCLKL   HY/201208   2015-01-19   Mid-Flood   Fine   Small Wave   S14   Middle   8.5   2   1   18:26   17.3   7.9   27.7   7.23   8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS13  | Bottom                                           | 10.3           | 3       | 2         | 17:49 | 17.5     | 7.99 | 27.8          | 7.17     | 7.45           | 8.6      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   S14   Moddle   8.5   2   1   18.26   17.3   7.9   27.6   7.18   7.31   8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Surface                                          | 1              | 1       | 1         | 18:26 | 17.2     | 7.96 | 27.6          | 7.27     | 7.12           | 7.8      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS14   Middle   8.5   2   2   18:26   17.4   7.97   27.7   7.26   7.28   8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Surface                                          | 1              | 1       | 2         | 18:26 | 17.3     | 7.97 | 27.7          | 7.23     | 7.23           | 8.2      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS14   Softom   15.9   3   1   18.26   17.4   7.97   27.9   7.33   7.62   8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Middle                                           | 8.5            | 2       | 1         | 18:26 | 17.3     | 7.9  | 27.6          | 7.18     | 7.31           | 8.1      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   S15   Surface   1   1   1/322   7.3   7.98   28   7.39   7.66   8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Middle                                           | 8.5            | 2       | 2         | 18:26 | 17.4     | 7.91 | 27.7          | 7.26     | 7.28           | 8.4      |
| TMCLKI.         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         IS15         Surface         I         I         17:32         17:3         7.96         27.7         7.26         7.01         8           TMCLKI.         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         IS15         Midele         5.4         2         1         7.32         17.3         7.87         27.7         7.21         6.93         7.8           TMCLKI.         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         IS15         Midele         5.4         2         1         17.32         17.3         7.87         27.7         7.21         6.93         7.8           TMCLKI.         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         IS15         Bottom         9.8         3         2         17.32         17.4         7.96         28.7         7.11         8.4           TMCLKI.         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         878         Surface         1         1         17:02         17.5         7.95         28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Bottom                                           | 15.9           | 3       | 1         | 18:26 | 17.4     | 7.97 | 27.9          | 7.33     | 7.62           | 8.7      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS15   Surface   1   2   17:32   17:4   7:97   27:6   7.29   6.97   8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS14  | Bottom                                           | 15.9           | 3       | 2         | 18:26 | 17.5     | 7.98 | 28            | 7.39     | 7.66           | 8.8      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS15   Middle   5.4   2   1   17.32   17.3   7.87   27.7   7.21   6.93   7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Surface                                          | 1              | 1       | 1         | 17:32 | 17.3     | 7.96 | 27.7          | 7.26     | 7.01           | 8        |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS15   Middle   5.4   2   2   17:32   17.4   7.88   27.8   7.26   6.87   8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Surface                                          | 1              | 1       | 2         | 17:32 | 17.4     | 7.97 | 27.6          | 7.29     | 6.97           | 8.3      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   IS15   Bottom   9.8   3   1   17:32   17.4   7.96   28   7.12   7.11   8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Middle                                           | 5.4            | 2       | 1         | 17:32 | 17.3     | 7.87 | 27.7          | 7.21     | 6.93           | 7.8      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR8   Surface   1   1   17:02   17:33   7:96   28.1   7.18   7.2   8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Middle                                           | 5.4            | 2       | 2         | 17:32 | 17.4     | 7.88 | 27.8          | 7.26     | 6.87           | 8.1      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR8   Surface   1   1   1   17:02   17.3   7.98   27.7   7.36   7.34   8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Bottom                                           | 9.8            | 3       | 1         | 17:32 | 17.4     | 7.96 | 28            | 7.12     | 7.11           | 8.4      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR8   Surface   1   1   2   17:02   17.4   7.99   27.6   7.3   7.41   8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | IS15  | Bottom                                           | 9.8            | 3       | 2         | 17:32 | 17.5     | 7.95 | 28.1          | 7.18     | 7.2            | 8.5      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR8         Middle         2         1         17:02         8         17:02         8         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         17:02         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Surface                                          | 1              | 1       | 1         | 17:02 | 17.3     | 7.98 | 27.7          | 7.36     | 7.34           | 8.4      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR8         Middle         2         2         17:02         17.4         8.02         27.9         7.22         7.58         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR8         Bottom         4.3         3         1         17:02         17.4         8.02         27.9         7.22         7.58         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Surface         1         1         17:17         17.3         7.96         27.7         7.37         7.49         8.2           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Surface         1         1         17:17         17.2         7.97         27.8         7.4         7.55         8.2           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Middle         2         1         17:17         17.2         7.93         27.8         7.4 <td< td=""><td>TMCLKL</td><td>HY/2012/08</td><td>2015-01-19</td><td>Mid-Flood</td><td>Fine</td><td>Small Wave</td><td>SR8</td><td>Surface</td><td>1</td><td>1</td><td>2</td><td>17:02</td><td>17.4</td><td>7.99</td><td>27.6</td><td>7.3</td><td>7.41</td><td>8.2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Surface                                          | 1              | 1       | 2         | 17:02 | 17.4     | 7.99 | 27.6          | 7.3      | 7.41           | 8.2      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR8   Bottom   4.3   3   1   17:02   17.4   8.02   27.9   7.22   7.58   8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Middle                                           |                | 2       | 1         | 17:02 |          |      |               |          |                |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR8         Bottom         4.3         3         2         17:02         17.5         8.01         27.8         7.28         7.52         8.9           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Surface         1         1         1         17:17         17.3         7.96         27.7         7.37         7.49         8.2           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Surface         1         1         2         17:17         17.2         7.97         27.8         7.4         7.55         8.2           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Middle         2         2         17:17         17.3         7.96         27.9         7.33         7.69         8.9           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         1         17:17         17.4         7.97<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Middle                                           |                | 2       | 2         | 17:02 |          |      |               |          |                |          |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR9   Surface   1   1   1   1   17:17   17.3   7.96   27.7   7.37   7.49   8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Bottom                                           | 4.3            | 3       | 1         | 17:02 | 17.4     | 8.02 | 27.9          | 7.22     | 7.58           | 8.6      |
| TMCLKL   HY/2012/08   2015-01-19   Mid-Flood   Fine   Small Wave   SR9   Middle   2   1   1   2   17:17   17.2   7.97   27.8   7.4   7.55   8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR8   | Bottom                                           | 4.3            | 3       | 2         | 17:02 | 17.5     | 8.01 | 27.8          | 7.28     | 7.52           |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Middle         2         1         17:17              Mid-Flood         Fine         Small Wave         SR9         Middle         2         2         17:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>TMCLKL</b> | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Surface                                          | 1              | 1       | 1         | 17:17 | 17.3     | 7.96 | 27.7          | 7.37     | 7.49           | 8.2      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Middle         2         2         17:17         7.33         7.69         8.9           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         1         17:17         17.3         7.96         27.9         7.33         7.69         8.9           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         2         17:17         17.4         7.97         28         7.37         7.74         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         1         16:38         17.4         7.88         27.6         7.41         7.12         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.91         27.7         7.38         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Surface                                          | 1              | 1       | 2         | 17:17 | 17.2     | 7.97 | 27.8          | 7.4      | 7.55           | 8.2      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         1         17:17         17.3         7.96         27.9         7.33         7.69         8.9           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         2         17:17         17.4         7.97         28         7.37         7.74         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         16:38         17.4         7.88         27.6         7.41         7.12         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.89         27.6         7.47         7.07         8.1           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         2         16:38         17.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Middle                                           |                | 2       | 1         | 17:17 |          |      |               |          |                |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR9         Bottom         4.6         3         2         17:17         17.4         7.97         28         7.37         7.74         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         16:38         17.4         7.88         27.6         7.41         7.12         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         2         16:38         17.5         7.89         27.6         7.47         7.07         8.1           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.91         27.7         7.38         7.16         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Middle                                           |                | 2       | 2         | 17:17 |          |      |               |          |                |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         16:38         17.4         7.88         27.6         7.41         7.12         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         2         16:38         17.5         7.89         27.6         7.47         7.07         8.1           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.91         27.7         7.38         7.16         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         2         16:38         17.6         7.92         27.8         7.43         7.21         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Bottom                                           | 4.6            | 3       | 1         | 17:17 | 17.3     | 7.96 | 27.9          | 7.33     | 7.69           | 8.9      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         2         16:38         17.5         7.89         27.6         7.47         7.07         8.1           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.91         27.7         7.38         7.16         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.92         27.8         7.43         7.21         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.92         27.8         7.33         7.44         8.8           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR9   | Bottom                                           | 4.6            | 3       | 2         | 17:17 | 17.4     | 7.97 | 28            | 7.37     | 7.74           | 8.7      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Surface         1         1         2         16:38         17.5         7.89         27.6         7.47         7.07         8.1           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         1         16:38         17.5         7.91         27.7         7.38         7.16         8.3           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.92         27.8         7.43         7.21         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.92         27.8         7.33         7.44         8.8           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR10A |                                                  | 1              | 1       | 1         | 16:38 | 17.4     |      |               | 7.41     | 7.12           | 8.3      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         2         16:38         17.6         7.92         27.8         7.43         7.21         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.99         27.8         7.33         7.44         8.8           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         2         16:38         17.5         7.98         27.9         7.27         7.51         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3         7.94         27.7         7.24         7.34         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    |                  |       | Surface                                          | 1              | 1       | 2         | 16:38 | 17.5     | 7.89 | 27.6          | 7.47     | 7.07           |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Middle         6.3         2         2         16:38         17.6         7.92         27.8         7.43         7.21         8.6           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.99         27.8         7.33         7.44         8.8           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         2         16:38         17.5         7.98         27.9         7.27         7.51         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3         7.94         27.7         7.24         7.34         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMCLKL        | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR10A | Middle                                           | 6.3            | 2       | 1         | 16:38 | 17.5     | 7.91 | 27.7          | 7.38     | 7.16           | 8.3      |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         1         16:38         17.6         7.99         27.8         7.33         7.44         8.8           TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         2         16:38         17.5         7.98         27.9         7.27         7.51         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Ebb         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3         7.94         27.7         7.24         7.34         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR10A |                                                  |                | 2       | 2         | 16:38 |          |      |               |          |                |          |
| TMCLKL         HY/2012/08         2015-01-19         Mid-Flood         Fine         Small Wave         SR10A         Bottom         11.6         3         2         16:38         17.5         7.98         27.9         7.27         7.51         8.7           TMCLKL         HY/2012/08         2015-01-19         Mid-Ebb         Fine         Small Wave         CS4         Surface         1         1         10:58         17.3         7.94         27.7         7.24         7.34         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | HY/2012/08 | 2015-01-19 | Mid-Flood | Fine    | Small Wave       | SR10A | <del> </del>                                     | +              | 3       | 1         | 16:38 | 17.6     |      |               | 7.33     |                |          |
| TMCLKL HY/2012/08 2015-01-19 Mid-Ebb Fine Small Wave CS4 Surface 1 1 1 1 10:58 17.3 7.94 27.7 7.24 7.34 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |            |            |           |         |                  |       |                                                  |                | 3       | 2         |       |          |      |               |          |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |            |           | Fine    |                  |       | <del>                                     </del> | 1              | 1       | 1         |       |          | _    |               |          |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |            |           |         |                  |       | •                                                | 1              | 1       | 2         | +     |          |      |               | 7.21     | 7.41           | 8.3      |

| Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН       | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|---------|------------------|------|---------|----------------|---------|-----------|-------|----------|----------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS4  | Middle  | 10.6           | 2       | 1         | 10:58 | 17.4     | 8.01     | 27.9          | 7.13     | 7.56           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS4  | Middle  | 10.6           | 2       | 2         | 10:58 | 17.5     | 8        | 27.9          | 7.1      | 7.62           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS4  | Bottom  | 20.2           | 3       | 1         | 10:58 | 17.7     | 7.92     | 28            | 7.28     | 7.93           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS4  | Bottom  | 20.2           | 3       | 2         | 10:58 | 17.7     | 7.93     | 28.1          | 7.3      | 8.01           | 9        |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS6  | Surface | 1              | 1       | 1         | 13:17 | 17.6     | 7.87     | 27.8          | 7.41     | 7.38           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | CS6  | Surface | 1              | 1       | 2         | 13:17 | 17.6     | 7.88     | 27.9          | 7.37     | 7.43           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       |      | Middle  | 5.6            | 2       | 1         | 13:17 | 17.7     | 7.92     | 27.9          | 7.33     | 7.5            | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         | Small Wave       |      | Middle  | 5.6            | 2       | 2         | 13:17 | 17.7     | 7.94     | 28            | 7.29     | 7.57           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         | Small Wave       |      | Bottom  | 10.2           | 3       | 1         | 13:17 | 17.7     | 7.97     | 28.1          | 7.16     | 7.76           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         | Small Wave       |      | Bottom  | 10.2           | 3       | 2         | 13:17 | 17.8     | 7.98     | 28.1          | 7.13     | 7.79           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 11:38 | 17.4     | 7.92     | 27.8          | 7.34     | 7.48           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 11:38 | 17.4     | 7.91     | 27.9          | 7.31     | 7.41           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  | 7.2            | 2       | 1         | 11:38 | 17.4     | 7.94     | 27.9          | 7.27     | 7.48           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  | 7.2            | 2       | 2         | 11:38 | 17.5     | 7.95     | 27.9          | 7.24     | 7.52           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | _       |                  |      | Bottom  | 13.4           | 3       | 1         | 11:38 | 17.6     | 7.99     | 27.9          | 7.16     | 7.72           | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Bottom  | 13.4           | 3       | 2         | 11:38 | 17.6     | 8        | 28            | 7.13     | 7.68           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 11:59 | 17.4     | 7.91     | 27.8          | 7.18     | 7.29           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 11:59 | 17.5     | 7.93     | 27.8          | 7.22     | 7.35           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 5.5            | 2       | 1         | 11:59 | 17.5     | 7.97     | 27.9          | 7.13     | 7.1            | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  | 5.5            | 2       | 2         | 11:59 | 17.5     | 7.95     | 27.8          | 7.11     | 7.16           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Bottom  | 10             | 3       | 1         | 11:59 | 17.6     | 7.96     | 27.9          | 7.07     | 7.54           | 8.5      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Bottom  | 10             | 3       | 2         | 11:59 | 17.7     | 7.97     | 27.9          | 7.04     | 7.62           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 11:17 | 17.4     | 7.98     | 27.8          | 7.18     | 7.27           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 11:17 | 17.4     | 7.99     | 27.8          | 7.21     | 7.33           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | _       | Small Wave       |      |         | 8.3            | 2       | 1         | 11:17 | 17.5     | 7.93     | 27.9          | 7.14     | 7.4            | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         | Small Wave       |      | Middle  | 8.3            | 2       | 2         | 11:17 | 17.5     | 7.94     | 27.9          | 7.12     | 7.49           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   | Fine    | Small Wave       | IS14 | Bottom  | 15.6           | 3       | 1         | 11:17 | 17.6     | 8.01     | 28            | 7.26     | 7.76           | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         | Small Wave       | IS14 | Bottom  | 15.6           | 3       | 2         | 11:17 | 17.7     | 8        | 28            | 7.29     | 7.81           | 9        |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 12:18 | 17.5     | +        | 27.8          | 7.14     | 7.09           | 7.8      |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 12:18 | 17.5     |          | 27.9          | 7.11     | 7.14           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 5.3            | 2       | 1         | 12:18 | 17.5     | 7.9      | 27.9          | 7.17     | 7.02           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 5.3            | 2       | 2         | 12:18 | 17.5     |          | 27.9          | 7.13     | 6.95           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 9.6            | 3       | 1         | 12:18 | 17.6     |          | 27.9          | 7.02     | 7.24           | 8.2      |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 9.6            | 3       | 2         | 12:18 | 17.6     |          | 28            | 7        | 7.33           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 12:55 | 17.5     | 8.02     |               | 7.25     | 7.47           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-19 |           |         |                  |      | Surface | 1              | 1       | 2         | 12:55 | 17.6     | 8.03     | 28            | 7.23     | 7.54           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  |                | 2       | 1         | 12:55 |          |          |               |          |                |          |
|         | HY/2012/08 | 2015-01-19 |           |         |                  |      | Middle  |                | 2       | 2         | 12:55 |          |          |               |          |                |          |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Bottom  | 4              | 3       | 1         | 12:55 | 17.5     |          | 28            | 7.17     | 7.67           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-19 |           |         |                  |      | Bottom  | 4              | 3       | 2         | 12:55 | 17.5     |          | 28.1          | 7.14     | 7.6            | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 12:39 | 17.5     | 7.99     | 27.9          | 7.28     | 7.41           | 8.4      |
|         | HY/2012/08 | 2015-01-19 |           |         |                  |      | Surface | 1              | 1       | 2         | 12:39 | 17.5     | 8        | 28            | 7.31     | 7.34           | 8.4      |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  |                | 2       | 1         | 12:39 | 1        |          |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-19 |           |         |                  |      | Middle  |                | 2       | 2         | 12:39 | 1        | <u> </u> |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 4.4            | 3       | 1         | 12:39 | 17.5     |          | 28            | 7.24     | 7.62           | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 4.4            | 3       | 2         | 12:39 | 17.5     |          | 28            | 7.2      | 7.68           | 8.6      |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 1         | 13:43 | 17.6     | 7.9      | 27.7          | 7.36     | 7.23           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Surface | 1              | 1       | 2         | 13:43 | 17.6     | +        | 27.8          | 7.39     | 7.16           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 6.2            | 2       | 1         | 13:43 | 17.6     |          | 27.9          | 7.3      | 7.34           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      | Middle  | 6.2            | 2       | 2         | 13:43 | 17.7     |          | 27.9          | 7.27     | 7.42           | 8.6      |
|         | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 11.4           | 3       | [1        | 13:43 | 17.7     |          | 28            | 7.2      | 7.55           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-19 | Mid-Ebb   |         |                  |      |         | 11.4           | 3       | 2         | 13:43 | 17.7     |          | 28.1          | 7.18     | 7.61           | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Flood |         |                  |      | Surface | 1              | 1       | 1         | 19:53 | 17.8     |          | 28.1          | 7.42     | 6.69           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Flood |         |                  |      | Surface | 1              | 1       | 2         | 19:53 | 17.7     |          | 28.2          | 7.48     | 6.64           | 7.7      |
|         | HY/2012/08 | 2015-01-21 | Mid-Flood |         |                  |      |         | 10.9           | 2       | 1         | 19:53 | 17.8     | 7.91     | 28.3          | 7.37     | 6.82           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Flood |         |                  |      | Middle  | 10.9           | 2       | 2         | 19:53 | 17.9     | 7.9      | 28.4          | 7.36     | 6.89           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Flood |         |                  |      |         | 20.7           | 3       | 1         | 19:53 | 18       |          | 28.6          | 7.31     | 7.03           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Flood | Fine    | Small Wave       | CS4  | Bottom  | 20.7           | 3       | 2         | 19:53 | 17.9     | 7.98     | 28.7          | 7.28     | 6.96           | 7.8      |

| Project          | Works                    | Date       | Tide                   | Weather      | Sea<br>Condition         | Stat           | Level              | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C)   | рН           | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|------------|------------------------|--------------|--------------------------|----------------|--------------------|----------------|---------|-----------|----------------|------------|--------------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Surface            | 1              | 1       | 1         | 17:19          | 17.7       | 7.63         | 28.3          | 7.42         | 6.26           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Surface            | 1              | 1       | 2         | 17:19          | 17.8       | 7.71         | 28.4          | 7.47         | 6.31           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Middle             | 5.9            | 2       | 1         | 17:19          | 17.9       | 7.77         | 28.7          | 7.31         | 6.47           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Middle             | 5.9            | 2       | 2         | 17:19          | 17.8       | 7.82         | 28.6          | 7.33         | 6.56           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Bottom             | 10.8           | 3       | 1         | 17:19          | 17.9       | 7.84         | 28.8          | 7.23         | 6.92           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | CS6            | Bottom             | 10.8           | 3       | 2         | 17:19          | 18         | 7.85         | 28.8          | 7.29         | 6.84           | 7.8        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-21 | Mid-Flood<br>Mid-Flood | Fine<br>Fine | Small Wave<br>Small Wave | IS12<br>IS12   | Surface<br>Surface | 1              | 11      | 10        | 19:09<br>19:09 | 18.1       | 7.98<br>7.99 | 28.5<br>28.4  | 7.48<br>7.56 | 6.62<br>6.59   | 7.8<br>7.6 |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS12           | Middle             | 7.4            | 2       | 1         | 19:09          | 18         | 7.98         | 28.5          | 7.33         | 6.82           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS12           | Middle             | 7.4            | 2       | 2         | 19:09          |            | 7.97         | 28.4          | 7.39         | 6.88           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS12           | Bottom             | 13.8           | 3       | 1         | 19:09          | 18.1       | 7.99         | 28.7          | 7.25         | 6.97           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS12           | Bottom             | 13.8           | 3       | 2         | 19:09          | 18.2       | 8            | 28.8          | 7.31         | 6.93           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Surface            | 1              | 1       | 1         | 18:54          |            | 7.94         | 28.3          | 7.38         | 6.76           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Surface            | 1              | 1       | 2         | 18:54          | 17.8       | 7.96         | 28.4          | 7.32         | 6.81           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Middle             | 5.8            | 2       | 1         | 18:54          | 18         | 7.89         | 28.6          | 7.28         | 7.01           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Middle             | 5.8            | 2       | 2         | 18:54          | 17.9       | 7.88         | 28.5          | 7.33         | 7.06           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Bottom             | 10.5           | 3       | 1         | 18:54          |            | 7.99         | 28.9          | 7.16         | 7.13           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS13           | Bottom             | 10.5           | 3       | 2         | 18:54          |            | 8.01         | 28.8          | 7.21         | 7.09           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS14           | Surface            | 1              | 1       | 1         | 19:31          |            | 7.96         | 28.4          | 7.41         | 6.92           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS14           | Surface            | 1              | 1       | 2         | 19:31          |            | 7.97         | 28.5          | 7.48         | 6.96           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS14           | Middle             |                | 2       | 1         | 19:31          | 17.8       | 7.99         | 28.8          | 7.33         | 7.01           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS14           | Middle             | -              | 2       | 2         | 19:31          | 17.9       | 7.99         | 28.9          | 7.4          | 6.94           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS14           | Bottom             | <u> </u>       | 3       | 1         | 19:31          | 18.1       | 7.97         | 28.9          | 7.27         | 6.76           | 7.7        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-21 | Mid-Flood<br>Mid-Flood | Fine<br>Fine | Small Wave               | IS14<br>IS15   | Bottom             | 1              | 3       | 1         | 19:31<br>18:39 | 18<br>17.7 | 7.96<br>7.95 | 29<br>28.4    | 7.32         | 6.71<br>6.98   | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave<br>Small Wave | IS15           | Surface<br>Surface | 1              | 1       | 10        | 18:39          | 17.7       | 7.96         | 28.5          | 7.33<br>7.39 | 6.88           | 7.8<br>7.9 |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS15           | Middle             | 5.4            | 2       | 1         | 18:39          | 18         | 7.92         | 28.8          | 7.24         | 6.32           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         |                          | IS15           |                    | 5.4            | 2       | 2         |                |            | 7.93         |               | 7.27         | 6.35           | 7.5        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS15           | _                  | 9.7            | 3       | 1         | 18:39          | 18.1       | 7.97         | 28.9          | 7.17         | 6.86           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | IS15           | _                  | 9.7            | 3       | 2         | 18:39          | 18         | _            | 28.8          | 7.23         | 6.81           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR8            | Surface            | 1              | 1       | 1         | 18:07          |            | 7.83         | 28.8          | 7.64         | 6.43           | 7.4        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         |                          | SR8            | Surface            | 1              | 1       | 2         | 18:07          |            | -            | 28.7          | 7.69         | 6.52           | 7.3        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR8            | Middle             |                | 2       | 1         | 18:07          |            |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR8            | Middle             |                | 2       | 2         | 18:07          |            |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR8            | Bottom             | 4.5            | 3       | 1         | 18:07          | 17.9       | 7.89         | 28.9          | 7.48         | 6.77           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR8            | Bottom             | 4.5            | 3       | 2         | 18:07          |            | 7.87         |               | 7.51         | 6.69           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         |                          | SR9            | Surface            | 1              | 1       | 1         | 18:23          |            |              |               | 7.45         | 6.77           | 7.7        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR9            | Surface            | 1              | 1       | 2         | 18:23          | 17.6       | 7.88         | 28.9          | 7.49         | 6.69           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         |                          | SR9            | Middle             |                | 2       | 1         | 18:23          |            |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR9            | Middle             | 1.0            | 2       | 2         | 18:23          | 1.7.0      | 7.04         |               | 7.00         | 0.04           |            |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         |                          | SR9            | _                  | 4.6            | 3       | 1         | 18:23          |            | 7.94         |               | 7.28         | 6.91           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR9            | Bottom             | 4.6            | 3       | 2         | 18:23          |            | 7.95         |               | 7.34         | 6.96           | 8.1        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-21 | Mid-Flood              | Fine         | Small Wave<br>Small Wave | SR10A<br>SR10A | Surface            | 1              | 1       | 10        | 17:43<br>17:43 |            |              | 28.7          | 7.54<br>7.62 | 6.71<br>6.77   | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood<br>Mid-Flood | Fine<br>Fine | Small Wave               | SR10A          | Surface<br>Middle  | 6.4            | 2       | 1         | 17:43          |            | 7.00         | 28.8          | 7.41         | 6.91           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR10A          | Middle             | 6.4            | 2       | 2         | 17:43          |            | 7.9          | 28.8          | 7.44         | 6.98           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR10A          | Bottom             | 11.8           | 3       | 1         | 17:43          | 18.1       |              | 28.7          | 7.26         | 7.11           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Flood              | Fine         | Small Wave               | SR10A          | Bottom             | 11.8           | 3       | 2         | 17:43          | 18         |              | 28.8          | 7.36         | 7.07           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Surface            | 1              | 1       | 1         | 11:57          | 18.1       | 7.91         | 28.7          | 7.37         | 6.85           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Surface            | 1              | 1       | 2         | 11:57          | 18         | _            |               | 7.35         | 6.89           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Middle             | 10.7           | 2       | 1         | 11:57          | 18.1       | 7.94         | 28.7          | 7.27         | 6.95           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Middle             | 10.7           | 2       | 2         | 11:57          | 18.2       |              | 28.7          | 7.26         | 6.97           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Bottom             | 20.4           | 3       | 1         | 11:57          |            | -            | 28.7          | 7.2          | 7.07           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS4            | Bottom             | 20.4           | 3       | 2         | 11:57          | 18.3       |              |               | 7.24         | 7.1            | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS6            | Surface            | 1              | 1       | 1         | 14:19          | 18         |              | 28.6          | 7.36         | 6.37           | 7.2        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS6            | Surface            | 1              | 1       | 2         | 14:19          | 18         | 7.87         | 28.6          | 7.35         | 6.4            | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS6            | Middle             | 5.3            | 2       | 1         | 14:19          |            | 7.9          | 28.7          | 7.26         | 6.58           | 7.6        |
| TMCLKL           | HY/2012/08               | 2015-01-21 | Mid-Ebb                | Fine         | Small Wave               | CS6            | Middle             | 5.3            | 2       | 2         | 14:19          | 18.2       | 7.88         | 28.8          | 7.21         | 6.61           | 7.9        |

| Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|---------|------------------|------|---------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | CS6  | Bottom  | 10.5           | 3       | 1         | 14:19 | 18.2     | 7.89 | 28.8          | 7.18     | 7.01           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | CS6  | Bottom  | 10.5           | 3       | 2         | 14:19 | 18.3     | 7.85 | 28.9          | 7.2      | 7.04           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Surface | 1              | 1       | 1         | 12:37 | 18       | 7.9  | 28.6          | 7.42     | 6.79           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Surface | 1              | 1       | 2         | 12:37 | 18.2     | 7.93 | 28.7          | 7.45     | 6.82           | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Middle  | 7.3            | 2       | 1         | 12:37 | 18.2     | 7.97 | 28.7          | 7.29     | 6.95           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Middle  | 7.3            | 2       | 2         | 12:37 | 18.2     | 7.96 | 28.7          | 7.32     | 6.98           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    |                  |      | Bottom  | 13.6           | 3       | 1         | 12:37 | 18.3     | 8    | 28.8          | 7.18     | 7.05           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS12 | Bottom  | 13.6           | 3       | 2         | 12:37 | 18.3     | 8.01 | 28.8          | 7.15     | 7.08           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 1         | 12:56 | 18.1     | 7.98 | 28.6          | 7.21     | 6.85           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 2         | 12:56 | 18.1     | 7.95 | 28.7          | 7.24     | 6.9            | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS13 |         | 5.7            | 2       | 1         | 12:56 | 18.2     | 7.92 | 28.7          | 7.2      | 7.12           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         | Small Wave       | IS13 | Middle  | 5.7            | 2       | 2         | 12:56 | 18.3     | 7.92 | 28.8          | 7.18     | 7.15           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | +    | Bottom  | 10.3           | 3       | 1         | 12:56 | 18.3     | 8    | 28.8          | 7.09     | 7.2            | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         |                  |      | Bottom  | 10.3           | 3       | 2         | 12:56 | 18.4     | 8.01 | 28.8          | 7.07     | 7.24           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 1         | 12:17 | 18.1     | 7.95 | 28.6          | 7.32     | 7.02           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         |                  | +    | Surface | 1              | 1       | 2         | 12:17 | 18.1     | 7.96 | 28.6          | 7.3      | 7.03           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      |         | 8.1            | 2       | 1         | 12:17 | 18.1     | 7.9  | 28.7          | 7.21     | 7.12           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         |                  |      |         | 8.1            | 2       | 2         | 12:17 | 18.2     | 7.91 | 28.6          | 7.24     | 7.1            | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    |                  |      | Bottom  | 15.1           | 3       | 1         | 12:17 | 18.2     | 7.99 | 28.7          | 7.16     | 6.84           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         | Small Wave       |      | Bottom  | 15.1           | 3       | 2         | 12:17 | 18.3     | 7.98 | 28.8          | 7.19     | 6.88           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 1         | 13:17 | 18.1     | 7.97 | 28.6          | 7.27     | 7.01           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 2         | 13:17 | 18       | 7.99 | 28.6          | 7.25     | 7.05           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS15 |         | 5.2            | 2       | 1         | 13:17 | 18.2     | 7.95 | 28.7          | 7.18     | 6.94           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   |         | Small Wave       | IS15 | Middle  | 5.2            | 2       | 2         | 13:17 | 18.3     | 7.94 | 28.7          | 7.15     | 6.9            | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | +    |         | 9.4            | 3       | 1         | 13:17 | 18.3     | 7.96 | 28.7          | 7.1      | 6.99           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | IS15 | Bottom  | 9.4            | 3       | 2         | 13:17 | 18.4     | 7.98 | 28.8          | 7.05     | 7.03           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR8  | Surface | 1              | 1       | 1         | 13:57 | 18.1     | 7.84 | 28.6          | 7.51     | 6.54           | 7.6      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR8  | Surface | 1              | 1       | 2         | 13:57 | 18       | 7.88 | 28.6          | 7.54     | 6.6            | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR8  | Middle  |                | 2       | 1         | 13:57 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    |                  | SR8  | Middle  |                | 2       | 2         | 13:57 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    |                  |      |         | 4.3            | 3       | 1         |       | 18.2     | -    | 28.7          | 7.4      | 6.86           | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR8  | Bottom  | 4.3            | 3       | 2         | 13:57 | 18.2     | 7.87 | 28.8          | 7.38     | 6.85           | 7.9      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Surface | 1              | 1       | 1         | 13:37 | 18       | 7.9  | 28.6          | 7.36     | 6.86           | 7.7      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       |      | Surface | 1              | 1       | 2         | 13:37 | 18       | 7.93 | 28.6          | 7.39     | 6.9            | 7.8      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Middle  |                | 2       | 1         | 13:37 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Middle  |                | 2       | 2         | 13:37 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Bottom  | 4.2            | 3       | 1         | 13:37 | 18.2     | 8    | 28.8          | 7.21     | 7.02           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    | Small Wave       | SR9  | Bottom  | 4.2            | 3       | 2         | 13:37 | 18.2     |      | 28.9          | 7.26     | 7.05           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-21 | Mid-Ebb   | Fine    |                  | +    | Surface | 1              | 1       | 1         | 14:41 | 18.1     |      | 28.6          | 7.44     | 6.84           | 7.6      |
|         |            | 2015-01-21 | Mid-Ebb   | Fine    |                  | +    | Surface | 1              | 1       | 2         |       | 18       |      | 28.5          | 7.48     | 6.85           | 7.8      |
|         |            | 2015-01-21 | Mid-Ebb   | Fine    |                  |      |         | 6.3            | 2       | 1         |       | 18.2     | -    | 28.7          | 7.34     | 7.04           | 8        |
| _       | <u> </u>   | 2015-01-21 | Mid-Ebb   | Fine    |                  |      |         | 6.3            | 2       | 2         |       | 18.2     |      | 28.8          | 7.3      | 7.06           | 8.3      |
| _       |            | 2015-01-21 | Mid-Ebb   | Fine    |                  |      |         | 11.6           | 3       | 1         |       | 18.3     |      | 28.9          | 7.28     | 7.17           | 8.2      |
|         |            | 2015-01-21 | Mid-Ebb   | Fine    |                  |      |         | 11.6           | 3       | 2         |       | 18.3     |      | 29            | 7.25     | 7.19           | 8.4      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  |      | Surface | 1              | 1       | 1         |       |          |      | 27.8          | 7.33     | 7.18           | 8.1      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  | CS4  | Surface | 1              | 1       | 2         | 10:35 | 17.8     |      | 27.8          | 7.3      | 7.24           | 8.3      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  |      |         | 10.8           | 2       | 1         | 10:35 | 17.8     | -    | 27.9          | 7.21     | 7.4            | 8.6      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  | CS4  | Middle  | 10.8           | 2       | 2         | 10:35 | 17.9     | -    | 27.9          | 7.18     | 7.48           | 8.8      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  |      |         | 20.6           | 3       | 1         |       | 17.9     | -    | 28            | 7.04     | 7.68           | 8.9      |
| -       |            | 2015-01-23 | Mid-Flood | Fine    |                  | CS4  |         | 20.6           | 3       | 2         | 10:35 | 17.9     | -    | 28.1          | 7.01     | 7.74           | 8.7      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  | +    | Surface | 1              | 1       | 1         | 08:05 | 17.7     |      | 27.9          | 7.37     | 7.18           | 8.2      |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  | CS6  | Surface | 1              | 1       | 2         | 08:05 | 17.7     | -    | 27.9          | 7.34     | 7.07           | 8        |
|         |            | 2015-01-23 | Mid-Flood | Fine    |                  |      |         | 5.8            | 2       | 1         |       | 17.7     |      | 27.9          | 7.39     | 7.31           | 8.4      |
| TMCLKL  |            | 2015-01-23 | Mid-Flood | Fine    |                  |      | Middle  | 5.8            | 2       | 2         | 08:05 | 17.8     | 7.9  | 27.9          | 7.41     | 7.38           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-23 | Mid-Flood | Fine    |                  | +    | Bottom  | 10.6           | 3       | 1         | 08:05 | 17.8     | •    | 28            | 7.28     | 7.58           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-23 | Mid-Flood | Fine    | Small Wave       | CS6  | Bottom  | 10.6           | 3       | 2         | 08:05 | 17.8     | 7.95 | 28            | 7.25     | 7.52           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-23 | Mid-Flood | Fine    | Small Wave       | IS12 | Surface | 1              | 1       | 1         | 10:00 | 17.7     | 8.01 | 27.9          | 7.2      | 7.17           | 8        |
|         |            | 2015-01-23 |           |         |                  |      |         |                |         |           |       |          | 8.02 |               |          |                |          |

| Project          | Works                    | Date       | Tide                   | Weather                               | Sea<br>Condition | Stat     | Level   | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C)     | рН           | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|------------|------------------------|---------------------------------------|------------------|----------|---------|----------------|---------|-----------|----------------|--------------|--------------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       | IS12     | Middle  | 7.3            | 2       | 1         | 10:00          | 17.8         | 8.08         | 28            | 7.08         | 7.36           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       | IS12     | Middle  | 7.3            | 2       | 2         | 10:00          | 17.8         | 8.09         | 28.1          | 7.05         | 7.3            | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       | Small Wave       | IS12     | Bottom  | 13.6           | 3       | 1         | 10:00          | 17.8         |              | 28.1          | 6.89         | 7.58           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          |         | 13.6           | 3       | 2         | 10:00          | 17.9         |              | 28.2          | 6.93         | 7.65           | 8.5        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       | Small Wave       |          | Surface | 1              | 1       | 1         | 09:43          | 17.8         |              | 27.8          | 7.26         | 7.2            | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          | Surface | 1              | 1       | 2         | 09:43          | 17.8         |              | 27.9          | 7.23         | 7.13           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          |         | 5.7            | 2       | 1         | 09:43          | 17.8         |              | 27.9          | 7.16         | 7.25           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          |         | 5.7            | 2       | 2         | 09:43          | 17.8         |              | 27.9          | 7.12         | 7.3            | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       |          | Bottom  | 10.4           | 3       | 1         | 09:43          | 17.9         | 8.09         | 28            | 7.03         | 7.56           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          | Bottom  | 10.4           | 3       | 2         | 09:43          | 17.9         | 8.1          | 28.1          | 6.99         | 7.48           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       |          | Surface | 1              | 1       | 1         | 10:17          | 17.7         |              | 27.8          | 7.25         | 7.06           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          | Surface | 1              | 1       | 2         | 10:17          | 17.6         |              | 27.8          | 7.28         | 7.13           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       |          |         | 8.4            | 2       | 1         | 10:17          | 17.7         | 7.98         | 28            | 7.13         | 7.27           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          |         | 8.4            | 2       | 2         | 10:17          | 17.8         | 7.99         | 28            | 7.1          | 7.34           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       | Small Wave       |          | Bottom  | 15.8           | 3       | 1         | 10:17          | 17.9         | 8.01         | 28            | 6.92         | 7.68           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          |         | 15.8           | 3       | 2         | 10:17          | 17.8         |              | 28.1          | 6.97         | 7.6            | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          | Surface |                | 1       | 0         | 09:26          | 17.7         |              | 27.9          | 7.36         | 7.19           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Surface | I              | 1       | 2         | 09:26          | 17.8         | 7.95         | 28            | 7.33         | 7.11           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       |                  |          |         | 5.4            | 2       | 10        | 09:26          | 17.7         | 7.94         | 28            | 7.2          | 7.28           | 8.2        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-23 | Mid-Flood<br>Mid-Flood | Fine<br>Fine                          |                  |          |         | 5.4<br>9.8     | 3       | 1         | 09:26<br>09:26 | 17.8<br>17.8 | 7.94<br>7.95 | 28 28.1       | 7.23<br>7.07 | 7.34<br>7.6    | 8.4<br>8.6 |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          |         | 9.8            | 3       | 10        | 09:26          | 17.8         | 7.96         | 28.2          | 7.07         | 7.52           | 8.5        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Surface | 9.0            | 1       | 1         | 08:56          | 17.0         | 8.01         | 27.9          | 7.1          | 7.09           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Surface | 1              | 1       | 2         | 08:56          | 17.7         | 8.03         | 28            | 7.23         | 7.14           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Middle  | 1              | 2       | 1         | 08:56          | 17.0         | 0.03         | 20            | 1.2          | 7.14           | 0.1        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Middle  |                | 2       | 2         | 08:56          |              | +            |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       |          |         | 4.2            | 3       | 1         | 08:56          | 17.8         | 8.05         | 28            | 7.08         | 7.36           | 8.6        |
|                  | HY/2012/08               |            | Mid-Flood              | Fine                                  |                  | <b>+</b> |         | 4.2            | 3       | 2         | +              | 17.8         | 8.06         |               | 7.13         | 7.29           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  | <b>+</b> | Surface | 1              | 1       | 1         | 09:11          | 17.7         |              | 28            | 7.31         | 7.28           | 8.4        |
|                  | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  | <b>†</b> | Surface | 1              | 1       | 2         | 09:11          | 17.6         |              | 28.1          | 7.29         | 7.22           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Middle  | †              | 2       | 1         | 09:11          | 1.7.10       | 1            |               | 1.20         | , . <u></u>    | 1          |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Middle  |                | 2       | 2         | 09:11          |              |              |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  | 1        |         | 4.6            | 3       | 1         | 09:11          | 17.7         | 8.08         | 28.1          | 7.14         | 7.46           | 8.7        |
|                  | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          |         | 4.6            | 3       | 2         | 09:11          | 17.8         |              | 28.1          | 7.11         | 7.39           | 8.5        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              |                                       | Small Wave       |          | Surface | 1              | 1       | 1         | 08:32          | 17.7         |              | 27.9          | 7.31         | 7.02           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  |                  |          | Surface | 1              | 1       | 2         | 08:32          | 17.7         | 7.96         | 27.9          | 7.29         | 6.95           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       |          |         | 6.2            | 2       | 1         | 08:32          | 17.7         |              | 27.9          | 7.35         | 7.14           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       | SR10A    | Middle  | 6.2            | 2       | 2         | 08:32          | 17.7         | 7.93         | 28            | 7.33         | 7.21           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       | SR10A    | Bottom  | 11.4           | 3       | 1         | 08:32          | 17.8         | 7.99         |               | 7.17         | 7.38           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Flood              | Fine                                  | Small Wave       | SR10A    | Bottom  | 11.4           | 3       | 2         | 08:32          | 17.8         | 7.97         | 28.1          | 7.2          | 7.42           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 | Small Wave       | CS4      | Surface | 1              | 1       | 1         | 13:26          | 18.2         | 7.99         | 28            | 7.24         | 7.17           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 | Small Wave       | CS4      | Surface | 1              | 1       | 2         | 13:26          | 18.1         | 7.96         | 28.1          | 7.26         | 7.19           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 10.8           | 2       | 1         | 13:26          | 18.1         |              | 28.2          | 7.2          | 7.34           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 10.8           | 2       | 2         | 13:26          | 18.1         |              | 28.1          | 7.18         | 7.4            | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 20.5           | 3       | 1         | 13:26          | 18.2         |              | 28.2          | 7.06         | 7.54           | 8.6        |
|                  | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 20.5           | 3       | 2         | 13:26          | 18.1         |              | 28.2          | 7.05         | 7.5            | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | · · · · · · · · · · · · · · · · · · · |                  |          | Surface | 1              | 1       | 1         | 15:42          | 17.9         |              | 28.1          | 7.32         | 7.12           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          | Surface | 1              | 1       | 2         | 15:42          | 18           |              | 28.1          | 7.35         | 7.18           | 7.9        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 5.7            | 2       | [1        | 15:42          | 18           |              | 28.2          | 7.3          | 7.24           | 8.3        |
|                  | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 5.7            | 2       | 2         | 15:42          | 17.9         |              | 28.2          | 7.32         | 7.3            | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | <del>'</del>                          |                  |          |         | 10.4           | 3       | [1        | 15:42          | 18.1         |              | 28.2          | 7.24         | 7.54           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 10.4           | 3       | 2         | 15:42          | 18           |              | 28.3          | 7.26         | 7.49           | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  | <b>+</b> | Surface | 1              | 1       | [1        | 14:04          | 18           |              | 27.9          | 7.24         | 7.16           | 8          |
|                  | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          | Surface | 1              | 1       | 2         | 14:04          | 18.1         | 7.96         |               | 7.22         | 7.18           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 |                  |          |         | 7.2            | 2       | [1        | 14:04          | 18.1         |              | 28.1          | 7.1          | 7.28           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                |                                       |                  |          |         | 7.2            | 2       | 2         | 14:04          | 18.2         |              | 28.1          | 7.06         | 7.26           | 8.4        |
|                  | HY/2012/08               | 2015-01-23 | Mid-Ebb                |                                       |                  |          |         | 13.4           | 3       | 1         | 14:04          | 18.2         | 8.02         |               | 6.92         | 7.5            | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23 | Mid-Ebb                | Sunny                                 | Small Wave       | IIS12    | Bottom  | 13.4           | 3       | [2        | 14:04          | 18.2         | 8.03         | 28.2          | 6.94         | 7.46           | 8.7        |

| Project          | Works                    | Date                | Tide               | Weather        | Sea<br>Condition         | Stat         | Level            | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C) | рН           | Salinity(ppt) | DO(mg/L)    | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|---------------------|--------------------|----------------|--------------------------|--------------|------------------|----------------|---------|-----------|----------------|----------|--------------|---------------|-------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Surface          | 1              | 1       | 1         | 14:23          | 18.2     | 7.98         | 28            | 7.21        | 7.1            | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Surface          | 1              | 1       | 2         | 14:23          | 18.1     | 7.97         | 28.1          | 7.22        | 7.12           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Middle           | 5.6            | 2       | 1         | 14:23          |          | 8.02         | 28.2          | 7.1         | 7.24           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Middle           | 5.6            | 2       | 2         | 14:23          |          | 8.03         | 28.1          | 7.12        | 7.26           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Bottom           | 10.2           | 3       | 1         | 14:23          |          | 8.06         | 28.2          | 7.03        | 7.4            | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS13         | Bottom           | 10.2           | 3       | 2         | 14:23          |          | 8.09         | 28.2          | 7.05        | 7.42           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Surface          | 1              | 1       | 1         | 13:46          |          | 8.01         | 28            | 7.21        | 7.1            | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Surface          | 1              | 1       | 2         | 13:46          | _        | 8.02         | 27.9          | 7.23        | 7.14           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Middle           | 8.2            | 2       | 1         | 13:46          |          | 7.98         | 28            | 7.1         | 7.2            | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Middle           | 8.2            | 2       | 2         | 13:46          |          | 7.97         | 28            | 7.14        | 7.22           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Bottom           | 15.4           | 3       | 1         | 13:46          | _        | 8.02         | 28.1          | 6.94        | 7.56           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS14         | Bottom           | 15.4           | 3       | 2         | 13:46          |          | 8.04         | 28.2          | 6.96        | 7.54           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS15         | Surface          |                | 1       | 10        | 14:42          |          | 7.99         | 28.1          | 7.3         | 7.16           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS15         | Surface          | I              | 0       | 2         | 14:42          | 18       | 7.96         | 28.1          | 7.28        | 7.14           | 8.3        |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | IS15<br>IS15 | Middle           | 5.3            | 2       | 10        | 14:42          | 18.1     | 7.96         | 28.2          | 7.21        | 7.22           | 8.4        |
|                  | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               |              | Middle           | 5.3            | 2       | 1         | 14:42          |          | 7.98<br>7.98 | 28.2          | 7.18        | 7.26           | 8.5        |
| TMCLKL<br>TMCLKL | HY/2012/08               | 2015-01-23          | Mid-Ebb<br>Mid-Ebb | Sunny<br>Sunny | Small Wave<br>Small Wave | IS15<br>IS15 | Bottom<br>Bottom | 9.6<br>9.6     | 2       | 10        | 14:42<br>14:42 | 18.1     | 7.96         | 28.2          | 7.14<br>7.1 | 7.54<br>7.48   | 8.6<br>8.7 |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Surface          | 9.0            | 1       | 1         | 15:19          | 18.2     | 7.98         | 28.1          | 7.1         | 7.11           | 0.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Surface          | 1              | 1       | 2         | 15:19          | 18.1     | 7.96         | 28.1          | 7.16        | 7.14           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Middle           | 1              | 2       | 1         | 15:19          | 10.1     | 7.90         | 20.1          | 7.10        | 7.14           | 0.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Middle           |                | 2       | 2         | 15:19          |          |              |               |             |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Bottom           | 1              | 3       | 1         | 15:19          | 18.2     | 8            | 28.2          | 7.06        | 7.28           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR8          | Bottom           | 1              | 3       | 2         | 15:19          |          | 7.98         | 28.1          | 7.08        | 7.32           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR9          | Surface          | 1              | 1       | 1         | 15:02          | 18.2     | 7.99         | 28.1          | 7.24        | 7.18           | 8 1        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR9          | Surface          | 1              | 1       | 2         | 15:02          |          | 8.01         | 28.2          | 7.26        | 7.22           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR9          | Middle           | '              | 2       | 1         | 15:02          | 10.1     | 0.01         | 20.2          | 17.20       | 1.22           | - 0.4      |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          |                          | SR9          | Middle           |                | 2       | 2         | 15:02          |          |              |               |             |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR9          | Bottom           | 4              | 3       | 1         | 15:02          | 18.2     | 8.02         | 28.2          | 7.1         | 7.34           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR9          | Bottom           | 4              | 3       | 2         | 15:02          |          |              | 28.2          | 7.07        | 7.36           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Surface          | 1              | 1       | 1         | 16:07          |          | 7.9          | 28.1          | 7.34        | 7.06           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Surface          | 1              | 1       | 2         | 16:07          |          |              |               | 7.36        | 7.01           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Middle           | 6.2            | 2       | 1         | 16:07          |          | 7.9          | 28.2          | 7.32        | 7.16           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Middle           | 6.2            | 2       | 2         | 16:07          | 18.1     | 7.89         | 28.1          | 7.34        | 7.18           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Bottom           | 11.3           | 3       | 1         | 16:07          | 18.2     |              | 28.2          | 7.21        | 7.29           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-23          | Mid-Ebb            | Sunny          | Small Wave               | SR10A        | Bottom           | 11.3           | 3       | 2         | 16:07          | 18.2     |              | 28.3          | 7.22        | 7.34           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Surface          | 1              | 1       | 1         | 12:34          | 17.8     | 8.05         | 27.8          | 7.26        | 7.3            | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Surface          | 1              | 1       | 2         | 12:34          | 17.8     | 8.06         | 27.8          | 7.23        | 7.37           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Middle           | 10.7           | 2       | 1         | 12:34          | 17.8     | 7.98         | 27.8          | 7.34        | 7.49           | 8.5        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Middle           | 10.7           | 2       | 2         | 12:34          | 17.9     | 7.99         | 27.9          | 7.31        | 7.55           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Bottom           | 20.4           | 3       | 1         | 12:34          | 17.9     | 8.01         | 28            | 7.18        | 7.8            | 8.8        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS4          | Bottom           | 20.4           | 3       | 2         | 12:34          | 17.9     | 8.03         |               | 7.15        | 7.73           | 8.5        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Surface          | 1              | 1       | 1         | 09:49          |          | -            | 27.6          | 7.28        | 7.43           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Surface          | 1              | 1       | 2         | 09:49          |          |              | 27.7          | 7.25        | 7.37           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Middle           | 5.9            | 2       | 1         | 09:49          |          | 8.01         | 27.7          | 7.31        | 7.56           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Middle           | 5.9            | 2       | 2         | 09:49          |          | _            | 27.8          | 7.29        | 7.5            | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Bottom           | 10.8           | 3       | 1         | 09:49          |          |              | 27.9          | 7.13        | 7.67           | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | CS6          | Bottom           | 10.8           | 3       | 2         | 09:49          | 17.8     | _            |               | 7.1         | 7.61           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Surface          | 1              | 1       | 1         | 11:53          |          | _            | 27.8          | 7.05        | 7.36           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Surface          | 1              | 1       | 2         | 11:53          |          |              |               | 7.02        | 7.28           | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Middle           | 7.3            | 2       | 1         | 11:53          |          | _            | 27.9          | 7.09        | 7.41           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Middle           | 7.3            | 2       | 2         | 11:53          |          | _            |               | 7.11        | 7.47           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Bottom           | 13.6           | 3       | 1         | 11:53          |          | 8.11         | 28            | 6.96        | 7.58           | 8.8        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS12         | Bottom           | 13.6           | 3       | 2         | 11:53          |          | 8.12         |               | 6.92        | 7.66           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         |                          | IS13         | Surface          | 11             | 11      | 1         | 11:30          |          |              |               | 7.09        | 7.32           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         | Small Wave               | IS13         | Surface          | 17             | 1       | 2         | 11:30          | 17.8     | _            | 27.7          | 7.13        | 7.42           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-26          | Mid-Flood          | Cloudy         |                          | IS13         | Middle           | 5.7            | 2       | 10        | 11:30          |          |              | 27.8          | 7.17        | 7.46           | 8.6        |
| INICLKL          | HY/2012/08               | <u> </u> ∠015-01-26 | IVIIU-F1000        | Cloudy         | Small Wave               | lo 13        | Middle           | JD./           | 2       | 2         | 11:30          | ۱۱/.۵    | 17.99        | 27.8          | 7.15        | 7.53           | 8.4        |

| Project  | Works        | Date       | Tide       | IVVeather | Sea<br>Condition | Stat  | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L) |
|----------|--------------|------------|------------|-----------|------------------|-------|---------|----------------|---------|-----------|-------|----------|------|---------------|--------------|----------------|----------|
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS13  | Bottom  | 10.4           | 3       | 1         | 11:30 | 17.9     | 8.04 | 27.9          | 7.03         | 7.68           | 8.8      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS13  | Bottom  | 10.4           | 3       | 2         | 11:30 | 17.9     | 8.03 | 27.9          | 6.98         | 7.62           | 8.9      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS14  | Surface | 1              | 1       | 1         | 12:15 | 17.8     | 7.92 | 27.7          | 7.15         | 7.24           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS14  | Surface | 1              | 1       | 2         | 12:15 | 17.8     | 7.93 | 27.8          | 7.12         | 7.18           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS14  | Middle  | 8.3            | 2       | 1         | 12:15 | 17.8     | 7.99 | 27.8          | 7.18         | 7.36           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS14  | Middle  | 8.3            | 2       | 2         | 12:15 | 17.9     | 8.01 | 27.9          | 7.21         | 7.42           | 8.2      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       | IS14  | Bottom  | 15.6           | 3       | 1         | 12:15 | 17.9     | 8.05 | 28            | 7.09         | 7.6            | 8.8      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | Cloudy    | Small Wave       |       | Bottom  | 15.6           | 3       | 2         | 12:15 | 17.9     | 8.06 | 28            | 7.05         | 7.68           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Surface | 1              | 1       | 1         | 11:11 | 17.7     | 7.98 | 27.6          | 7.18         | 7.32           | 8        |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | -         |                  |       | Surface | 1              | 1       | 2         | 11:11 | 17.6     | 7.99 | 27.7          | 7.15         | 7.39           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       |         | 5.5            | 2       | 1         | 11:11 | 17.7     | 7.92 | 27.7          | 7.21         | 7.48           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Middle  | 5.5            | 2       | 2         | 11:11 | 17.7     | 7.93 | 27.7          | 7.23         | 7.4            | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Bottom  | 10             | 3       | 1         | 11:11 | 17.7     | 8.01 | 27.8          | 7.08         | 7.57           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | ,         |                  |       | Bottom  | 10             | 3       | 2         | 11:11 | 17.8     | 8.02 | 27.9          | 7.05         | 7.63           | 8.9      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Surface | 1              | 1       | 1         | 10:42 | 17.6     | 8.01 | 27.7          | 7.17         | 7.48           | 8.2      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Surface | 1              | 1       | 2         | 10:42 | 17.7     | 8    | 27.8          | 7.14         | 7.55           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Middle  |                | 2       | 1         | 10:42 |          |      |               |              |                |          |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | ,         |                  |       | Middle  |                | 2       | 2         | 10:42 | 1        | 1    |               |              |                | 1        |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       |         | 4.4            | 3       | [1        | 10:42 | 17.6     | 8.04 | 27.8          | 7.09         | 7.73           | 8.8      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Bottom  | 4.4            | 3       | 2         | 10:42 | 17.6     | 8.05 | 27.8          | 7.05         | 7.68           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Surface | 1              | 1       | 1         | 10:56 | 17.7     | 8.04 | 27.8          | 7.26         | 7.58           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Surface | 1              | 1       | 2         | 10:56 | 17.7     | 8.05 | 27.8          | 7.23         | 7.5            | 8.5      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Middle  |                | 2       | 1         | 10:56 |          |      |               |              |                |          |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       | Middle  |                | 2       | 2         | 10:56 |          |      |               |              |                |          |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         | Small Wave       |       |         | 4.8            | 3       | 1         | 10:56 | 17.7     | 8.09 | 27.8          | 7.15         | 7.61           | 8.9      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | ,         | Small Wave       |       | Bottom  | 4.8            | 3       | 2         | 10:56 | 17.7     | 8.08 | 27.9          | 7.17         | 7.67           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         | Small Wave       | SR10A | Surface | 1              | 1       | 1         | 10:16 | 17.6     | 7.92 | 27.6          | 7.36         | 7.29           | 8.4      |
|          |              |            | Mid-Flood  | _         |                  |       | Surface | -              | 1       | 2         | 10:16 |          | 7.93 |               | 7.34         | 7.22           | 8.2      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | ,         |                  |       |         | 6.2            | 2       | 1         | 10:16 | 17.6     |      | 27.6          | 7.4          | 7.38           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | _         |                  |       |         | 6.2            | 2       | 2         | 10:16 | 17.6     |      | 27.6          | 7.38         | 7.45           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | -         |                  |       |         | 11.4           | 3       | 1         | 10:16 | 17.7     | +    | 27.7          | 7.26         | 7.5            | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Flood  | -         |                  |       |         | 11.4           | 3       | 2         | 10:16 | 17.7     | 7.92 |               | 7.21         | 7.57           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | •         |                  |       | Surface | 1              | 1       | 1         | 16:13 | 18.1     |      | 27.9          | 7.27         | 7.24           | 8.1      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            | •         |                  |       | Surface | 1              | 1       | 2         | 16:13 | 18.1     |      | 27.8          | 7.24         | 7.18           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | •         |                  |       |         | 10.7           | 2       | 1         | 16:13 | 18.2     | 8.03 |               | 7.28         | 7.25           | 8.5      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            |           |                  |       |         | 10.7           | 2       | 2         | 16:13 | 18.1     | 8.02 |               | 7.25         | 7.3            | 8.2      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | •         |                  |       |         | 20.3           | 3       | 1         | 16:13 | 18.2     | +    | 28.1          | 7.14         | 7.64           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            |           |                  |       |         | 20.3           | 3       | 2         | 16:13 | 18.2     |      | 28.1          | 7.16         | 7.68           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            | •         |                  |       | Surface | 1              | 1       | 1         | 18:27 | 17.8     |      | 27.8          | 7.28         | 7.34           | 8.1      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            | _         |                  |       | Surface | 1              | 1       | 2         | 18:27 | 17.9     | -    | 27.9          | 7.3          | 7.35           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 5.8            | 2       | 1         | 18:27 | 17.9     |      | 27.9          | 7.3          | 7.48           | 8.8      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            | •         |                  |       |         | 5.8            | 2       | 2         | 18:27 | 17.8     | 8.03 |               | 7.26         | 7.46           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | _         |                  |       |         | 10.6           | 3       | 1         | 18:27 | 17.9     | -    | 28            | 7.14         | 7.52           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 |            | ,         |                  |       |         | 10.6           | 3       | 2         | 18:27 | 17.9     | 8.02 |               | 7.16         | 7.5            | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    |           |                  |       | Surface | 1              | 1       | 1         |       | 18       | 8.02 |               | 7.03         | 7.2            | 8.1      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | •         |                  |       | Surface | 1              | 1       | 2         | 16:51 | 18       | -    | 27.9          | 7.05         | 7.24           | 8.4      |
| TMCLKL   | <del> </del> | 2015-01-26 | Mid-Ebb    |           |                  |       |         | 7.2            | 2       | 1         | 16:51 | 18.1     | 8.06 |               | 7.03         | 7.36           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    |           |                  |       | Middle  | 7.2            | 2       | 2         | 16:51 | 18       |      | 28            | /            | 7.39           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    |           |                  |       |         | 13.4           | 3       | 11        | 16:51 | 18.1     |      | 28.1          | 6.98         | 7.48           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 13.4           | 3       | 2         | 16:51 | 18       | +    | 28.1          | 7.00         | 7.52           | 8.6      |
| TMCLKL   | <del> </del> | 2015-01-26 | Mid-Ebb    | _         |                  |       | Surface | 1              | 1       | 1         | 17:10 | 18       |      | 28            | 7.03         | 7.27           | 8.1      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       | Surface | 1              | 1       | 2         | 17:10 | 18.1     |      | 27.9          | 7.05         | 7.26           | 8.3      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 5.6            | 2       | 1         | 17:10 | 18       |      | 27.9          | 7.08         | 7.34           | 8.4      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 5.6            | 2       | 2         | 17:10 | 17.9     |      | 28            | 7.1          | 7.37           | 8.7      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 10.2           | 3       | 1         | 17:10 | 18.1     | 8.02 |               | 7.05         | 7.54           | 8.6      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | ,         |                  |       |         | 10.2           | 3       | 2         | 17:10 | 18.1     |      | 28            | 7.02         | 7.56           | 8.8      |
| TMCLKL   | HY/2012/08   | 2015-01-26 | Mid-Ebb    | _         |                  |       | Surface | 1              | 1       | 11        | 16:32 | 18.1     |      | 27.8          | /.1<br> 7.40 | 7.16           | 8        |
| TIVICLKL | HY/2012/08   | 2015-01-26 | ממ±-מוועון | Sunny     | Small Wave       | JIS14 | Surface | П              | 1       | 2         | 16:32 | ן וא. ז  | 8    | 27.9          | 7.12         | 7.2            | 8.1      |

| Project          | Works                    | Date                     | Tide               | Weather        | Sea<br>Condition         | Stat       | Level             | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C) | рН                                               | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|------------------|--------------------------|--------------------------|--------------------|----------------|--------------------------|------------|-------------------|----------------|---------|-----------|----------------|----------|--------------------------------------------------|---------------|----------|----------------|----------|
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS14       | Middle            | 7.7            | 2       | 1         | 16:32          | 18.1     | 8.03                                             | 27.9          | 7.2      | 7.28           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS14       | Middle            | 7.7            | 2       | 2         | 16:32          | 18.2     | 8.02                                             | 27.9          | 7.16     | 7.32           | 8.3      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS14       | Bottom            | 15.4           | 3       | 1         | 16:32          | 18.1     | 8.04                                             | 28.1          | 7.08     | 7.54           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS14       | Bottom            | 15.4           | 3       | 2         | 16:32          | 18       | 8.04                                             | 28            | 7.06     | 7.52           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Surface           | 1              | 1       | 1         | 17:29          | 18       |                                                  | 27.8          | 7.18     | 7.34           | 8.2      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Surface           | 1              | 1       | 2         | 17:29          | 17.9     | 7.99                                             | 27.9          | 7.2      | 7.3            | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Middle            | 5.4            | 2       | 1         | 17:29          | 18       | 7.94                                             | 27.8          | 7.2      | 7.44           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Middle            | 5.4            | 2       | 2         | 17:29          | 17.9     | 7.95                                             | 27.9          | 7.22     | 7.46           | 8.9      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Bottom            | 9.7            | 3       | 1         | 17:29          | 17.9     | 7.98                                             | 27.8          | 7.1      | 7.48           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | IS15       | Bottom            | 9.7            | 3       | 2         | 17:29          | 17.9     | 7.96                                             | 27.9          | 7.06     | 7.5            | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Surface           | 11             | 1<br> 4 | 1         | 18:05          | 17.9     |                                                  | 27.9          | 7.22     | 7.34           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Surface           | 1              | 2       | 2         | 18:05          | 17.9     | 8.02                                             | 27.9          | 7.2      | 7.38           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Middle            | <u> </u>       | 2       | 1         | 18:05          | 1        | ├                                                |               |          |                |          |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Middle            | 1.0            | 2       | 2         | 18:05          | 10       | 0.04                                             | 00            | 7.4      | 7.54           |          |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Bottom            | 4.3            | 3       | 10        | 18:05          | 18       | 8.01                                             | 28            | 7.1      | 7.54           | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR8        | Bottom            | 4.3            | 3       | 2         | 18:05          | 18       | 8.01                                             | 28            | 7.06     | 7.56           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR9        | Surface           | 11             | 1       | 10        | 17:47          | 18       |                                                  | 27.8          | 7.24     | 7.44           | 0.1      |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-26<br>2015-01-26 | Mid-Ebb<br>Mid-Ebb | Sunny<br>Sunny | Small Wave<br>Small Wave | SR9<br>SR9 | Surface<br>Middle | +              | 2       | 1         | 17:47<br>17:47 | 18       | 8.02                                             | 27.9          | 7.2      | 7.38           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR9        | Middle            |                | 2       | 2         | 17:47          | 1        | <del>                                     </del> |               | 1        |                |          |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR9        | Bottom            | 4.2            | 2       | 1         | 17:47          | 18.1     | 8.04                                             | 27.9          | 7.12     | 7.54           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR9        | Bottom            | 4.2            | 3       | 2         | 17:47          | 18.1     | 8.06                                             | 28            | 7.08     | 7.6            | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR10A      | Surface           | 1              | 1       | 1         | 18:53          | 17.9     | 7.94                                             | 27.9          | 7.3      | 7.3            | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR10A      | Surface           |                | 1       | 2         | 18:53          | 17.8     |                                                  | 27.8          | 7.32     | 7.32           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR10A      | Middle            | 6.1            | 2       | 1         | 18:53          | 17.8     |                                                  | 27.8          | 7.3      | 7.34           | 8.3      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR10A      | Middle            | 6.1            | 2       | 2         | 18:53          | 17.9     | 7.96                                             | 27.9          | 7.33     | 7.36           | 8.1      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          | Small Wave               | SR10A      | Bottom            | 11.2           | 3       | 1         | 18:53          | 18       | 7.94                                             | 28            | 7.22     | 7.48           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-26               | Mid-Ebb            | Sunny          |                          | SR10A      | +                 | 11.2           | 3       | 2         | 18:53          | 18.1     | 7.96                                             |               | 7.2      | 7.46           | 8 7      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS4        | Surface           | 1              | 1       | 1         | 14:10          | 17.8     |                                                  | 27.8          | 7.48     | 7.58           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | CS4        | Surface           | 1              | 1       | 2         | 14:10          | 17.8     | _                                                |               | 7.51     | 7.51           | 8.3      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS4        | Middle            | 10.9           | 2       | 1         | 14:10          | 17.9     | 8.1                                              | 27.9          | 7.31     | 7.43           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | CS4        | Middle            | 10.9           | 2       | 2         | 14:10          | 17.9     | 8.11                                             | 28            | 7.27     | 7.38           | 8.2      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS4        | Bottom            | 20.8           | 3       | 1         | 14:10          | 18.1     | -                                                |               | 7.05     | 7.82           | 9.1      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS4        | Bottom            | 20.8           | 3       | 2         | 14:10          | 18.1     | -                                                | 28.2          | 7.02     | 7.76           | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Surface           | 1              | 1       | 1         | 11:24          | 17.8     | -                                                | 27.7          | 7.4      | 7.46           | 8.2      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Surface           | 1              | 1       | 2         | 11:24          | 17.8     |                                                  | 27.6          | 7.37     | 7.52           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Middle            | 5.9            | 2       | 1         | 11:24          | 17.8     |                                                  | 27.7          | 7.28     | 7.28           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Middle            | 5.9            | 2       | 2         | 11:24          | 17.9     | 8.1                                              | 27.7          | 7.31     | 7.2            | 8.5      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Bottom            | 10.8           | 3       | 1         | 11:24          | 17.9     | 8.13                                             | 27.8          | 7.16     | 7.78           | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | CS6        | Bottom            | 10.8           | 3       | 2         | 11:24          | 18       | 8.14                                             | 27.9          | 7.12     | 7.85           | 9.1      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS12       | Surface           | 1              | 1       | 1         | 13:27          | 17.8     | 7.99                                             | 27.8          | 7.54     | 7.39           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS12       | Surface           | 1              | 1       | 2         | 13:27          | 17.8     |                                                  | 27.8          | 7.51     | 7.45           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS12       | Middle            | 7.4            | 2       | 1         | 13:27          | 17.9     | 8.01                                             | 27.9          | 7.39     | 7.23           | 8.5      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS12       | Middle            | 7.4            | 2       | 2         | 13:27          | 17.9     | 8.03                                             |               | 7.41     | 7.28           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS12       | Bottom            | 13.8           | 3       | 1         | 13:27          | 18       |                                                  | 28.1          | 7.26     | 7.63           | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS12       | Bottom            | 13.8           | 3       | 2         | 13:27          | 18       | 8.08                                             |               | 7.22     | 7.7            | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS13       | Surface           | 1              | 1       | 1         | 13:08          | 17.8     |                                                  | 27.7          | 7.31     | 7.64           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS13       | Surface           | 1              | 1       | 2         | 13:08          | 17.8     |                                                  | 27.8          | 7.28     | 7.56           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS13       | Middle            | 5.7            | 2       | 1         | 13:08          | 17.8     |                                                  | 27.8          | 7.25     | 7.4            | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS13       | Middle            | 5.7            | 2       | 2         | 13:08          | 17.8     | +                                                | 27.8          | 7.22     | 7.47           | 8.3      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS13       | Bottom            | 10.4           | 3       | 1         | 13:08          | 17.9     | -                                                | 28            | 7.04     | 7.85           | 9.2      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS13       | Bottom            | 10.4           | 3       | 2         | 13:08          | 17.9     | -                                                |               | 7.01     | 7.78           | 9.3      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS14       | Surface           | 1              | 1       | 1         | 13:49          | 17.8     | -                                                |               | 7.46     | 7.49           | 8.7      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS14       | Surface           | 1              | 1       | 2         | 13:49          | 17.8     | -                                                | 27.9          | 7.42     | 7.55           | 8.6      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS14       | Middle            | 8.3            | 2       | 1         | 13:49          | 17.8     | -                                                | 27.9          | 7.33     | 7.34           | 8.4      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS14       | Middle            | 8.3            | 2       | 2         | 13:49          | 17.9     | 8.08                                             |               | 7.3      | 7.31           | 8.1      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         |                          | IS14       | Bottom            | 15.6           | 3       | 1         | 13:49          | 17.9     | 8.12                                             |               | 7.17     | 7.71           | 8.8      |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy         | Small Wave               | IS14       | Bottom            | 15.6           | 3       | 2         | 13:49          | 18       | 8.11                                             | 28.1          | 7.14     | 7.77           | 9        |

| Project          | Works                    | Date                     | Tide               | Weather          | Sea<br>Condition | Stat         | Level             | Water<br>Depth | Lev_Cod | Replicate | Time           | Temp(°C)     | рН       | Salinity(ppt) | DO(mg/L)     | Turbidity(NTU) | SS(mg/L)   |
|------------------|--------------------------|--------------------------|--------------------|------------------|------------------|--------------|-------------------|----------------|---------|-----------|----------------|--------------|----------|---------------|--------------|----------------|------------|
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       | IS15         | Surface           | 1              | 1       | 1         | 12:47          | 17.8         | 8.01     | 27.7          | 7.43         | 7.58           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       | IS15         | Surface           | 1              | 1       | 2         | 12:47          | 17.8         | 8.03     | 27.7          | 7.4          | 7.5            | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       | IS15         | Middle            | 5.6            | 2       | 1         | 12:47          | 17.8         | 8.1      | 27.7          | 7.36         | 7.36           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              |                   | 5.6            | 2       | 2         | 12:47          | 17.8         | 8.09     | 27.8          | 7.33         | 7.41           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  | Small Wave       |              | Bottom            | 10.2           | 3       | 1         | 12:47          | 17.8         |          | 27.8          | 7.11         | 7.73           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           |                  |              | Bottom            | 10.2           | 3       | 2         | 12:47          | 17.9         | 7.97     | 27.9          | 7.07         | 7.8            | 9          |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              | Surface           | 1              | 1       | 1         | 12:17          | 17.8         | 8.07     | 27.6          | 7.27         | 7.33           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              | Surface           | 1              | 1       | 2         | 12:17          | 17.8         | 8.08     | 27.6          | 7.3          | 7.4            | 8.3        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           |                  |              | Middle            |                | 2       | 1         | 12:17          |              |          |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              | Middle            | <u> </u>       | 2       | 2         | 12:17          |              |          |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              |                   | 4.6            | 3       | 1         | 12:17          | 17.8         |          | 27.6          | 7.05         | 7.38           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | ,                |                  |              |                   | 4.6            | 3       | 2         | 12:17          | 17.8         | 8.1      | 27.7          | 7.08         | 7.47           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  | Small Wave       |              | Surface           | 1              | 1       | 1         | 12:31          | 17.8         | 7.97     | 27.6          | 7.35         | 7.43           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              | Surface           | <u> 1</u>      | 1       | 2         | 12:31          | 17.7         | 7.95     | 27.7          | 7.32         | 7.36           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  | Small Wave       |              | Middle            | <del> </del>   | 2       | 1         | 12:31          |              |          |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | _                |                  |              | Middle            | <del>  </del>  | 2       | 2         | 12:31          | 1            | <u> </u> |               |              |                |            |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  | Small Wave       |              |                   | 4.8            | 3       | 11        | 12:31          | 17.8         | _        | 27.7          | 7.16         | 7.29           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  |                  |              |                   | 4.8            | 3       | 2         | 12:31          | 17.8         | 8.01     | 27.8          | 7.12         | 7.37           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          |                  | Small Wave       |              | Surface           | 11             | 1       | 1         | 11:50          | 17.7         |          | 27.5          | 7.48         | 7.24           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              | Surface           | 1              | 1       | 2         | 11:50          | 17.8         |          | 27.6          | 7.44         | 7.17           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              | Middle            | 6.3            | 2       | 1         | 11:50          | 17.8         | -        | 27.6          | 7.37         | 7.08           | 8          |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              | Middle            | 6.3            | 2       | 2         | 11:50          | 17.8         |          | 27.7          | 7.35         | 7.04           | 7.8        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              | Bottom            | 11.6           | 3       | 1         | 11:50          | 17.9         |          | 27.8          | 7.23         | 7.55           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Flood          | Cloudy           | Small Wave       |              | Bottom            | 11.6           | 3       | 2         | 11:50          | 17.9         |          | 27.8          | 7.2          | 7.61           | 8.7        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           | Small Wave       |              | Surface           | <u> </u>       | 1       | 1         | 18:46          | 17.9         |          | 27.9          | 7.36         | 7.7            | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              | Surface           | 1              | 1       | 2         | 18:46          | 17.9         |          | 27.9          | 7.4          | 7.65           | 8.8        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           | Small Wave       | -            | Middle            | 10.8           | 2       | 1         | 18:46          | 17.9         | 8.11     | 28            | 7.21         | 7.55           | 8.6        |
|                  | HY/2012/08               |                          |                    |                  |                  |              |                   | 10.8           | 2       | 2         | 18:46          |              | _        | 28.1          | 7.15         | 7.49           | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 20.6           | 3       | 1         | 18:46          | 18           |          | 28.2          | 6.94         | 7.93           | 9.2        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 20.6           | 3       | 2         | 18:46          | 17.9         |          | 28.2          | 6.96         | 7.88           | 8.8        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              | Surface           | 11             | 1       | 1         | 21:30          | 17.8         | _        | 27.7          | 7.29         | 7.57           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28<br>2015-01-28 | Mid-Ebb<br>Mid-Ebb | Cloudy           |                  |              | Surface<br>Middle | I              | 10      | 1         | 21:30<br>21:30 | 17.9<br>17.8 | _        | 27.6<br>27.8  | 7.25<br>7.17 | 7.62<br>7.39   | 8.8<br>8.2 |
| TMCLKL<br>TMCLKL | HY/2012/08<br>HY/2012/08 | 2015-01-28               | Mid-Ebb            | Cloudy<br>Cloudy |                  |              |                   | 5.8<br>5.8     | 2       | 2         | 21:30          | 17.8         |          | 27.6          | 7.17         | 7.33           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 10.6           | 2       | 1         | 21:30          | 17.9         |          | 27.7          | 7.06         | 7.89           | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <b>!</b>     |                   | 10.6           | 2       | 2         | 21:30          | 17.9         | _        | 27.8          | 7.06         | 7.96           | 9.1        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | 1            | Surface           | 1              | 1       | 1         | 19:27          | 17.8         | 0.12     | 27.9          | 7.42         | 7.5            | 8.2        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <del> </del> | Surface           | 1              | 1       | 2         | 19:27          | 17.8         | 8.01     | 27.8          | 7.39         | 7.56           | 8.1        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 7.3            | 2       | 1         | 19:27          | 17.8         | _        | 28            | 7.27         | 7.34           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 7.3            | 2       | 2         | 19:27          | 17.9         | 8.04     |               | 7.36         | 7.39           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28               |                    | Cloudy           |                  |              |                   | 13.6           | 3       | 1         | 19:27          | 18           | 8.08     |               | 7.15         | 7.73           | 8.8        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 13.6           | 3       | 2         | 19:27          | 18           | 8.08     |               | 7.11         | 7.84           | 9          |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              | Surface           | 1              | 1       | 1         | 19:47          | 17.7         |          | 27.8          | 7.19         | 7.77           | 8.4        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              | Surface           | 1              | 1       | 2         | 19:47          | 17.8         |          | 27.8          | 7.14         | 7.68           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 5.6            | 2       | <u> -</u> | 19:47          | 17.8         |          | 27.7          | 7.12         | 7.55           | 8.7        |
|                  | HY/2012/08               | 2015-01-28               |                    | Cloudy           |                  |              |                   | 5.6            | 2       | 2         | 19:47          | 17.7         | 8.05     |               | 7.09         | 7.59           | 8.9        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <b>!</b>     |                   | 10.2           | 3       | 1         | 19:47          | 17.9         | 8        | 28.1          | 6.96         | 7.96           | 9.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 10.2           | 3       | 2         | 19:47          | 17.8         | 8.02     | 28.1          | 6.9          | 7.88           | 8.8        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <b>!</b>     | Surface           | 1              | 1       | 1         | 19:05          | 17.8         |          | 27.9          | 7.36         | 7.6            | 8.7        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <b>!</b>     | Surface           | 1              | 1       | 2         | 19:05          | 17.7         |          | 27.8          | 7.3          | 7.66           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 8.2            | 2       | 1         | 19:05          | 17.8         |          | 28            | 7.2          | 7.46           | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 8.2            | 2       | 2         | 19:05          | 17.8         |          | 28.2          | 7.17         | 7.41           | 8.4        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              |                   | 15.4           | 3       | 1         | 19:05          | 18           | 8.13     |               | 7.06         | 7.82           | 9.2        |
|                  | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <del> </del> |                   | 15.4           | 3       | 2         | 19:05          | 18           | 8.12     |               | 7.02         | 7.88           | 9.3        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  |              | Surface           | 1              | 1       | 1         | 20:07          | 17.9         | 8.02     |               | 7.31         | 7.71           | 8.6        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | Mid-Ebb            | Cloudy           |                  | <b>†</b>     | Surface           | 1              | 1       | 2         | 20:07          | 17.8         | 8.02     |               | 7.28         | 7.62           | 8.7        |
|                  |                          |                          | Mid-Ebb            |                  |                  |              |                   | 5.5            |         | 1         |                |              |          |               |              |                | 8.2        |
| TMCLKL           | HY/2012/08               | 2015-01-28               | HVIIQ-EDD          | Cloudy           | Small Wave       | 11010        | Hyllaale          | 15.5           | 12      | 11        | 20:07          | 17.7         | 8.11     | 27.7          | 7.24         | 7.47           | 18.∠       |

| Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat     | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|-----------|---------|------------------|----------|---------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | IS15     | Bottom  | 10             | 3       | 1         | 20:07 | 17.7     | 8    | 27.7          | 7        | 7.84           | 8.9      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | IS15     | Bottom  | 10             | 3       | 2         | 20:07 | 17.7     | 7.98 | 27.9          | 6.95     | 7.93           | 9.2      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Surface | 1              | 1       | 1         | 20:43 | 17.8     | 8.06 | 27.5          | 7.14     | 7.45           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Surface | 1              | 1       | 2         | 20:43 | 17.7     | 8.07 | 27.7          | 7.2      | 7.52           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Middle  |                | 2       | 1         | 20:43 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Middle  |                | 2       | 2         | 20:43 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Bottom  | 4.4            | 3       | 1         | 20:43 | 17.8     | 8.1  | 27.7          | 6.93     | 7.5            | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR8      | Bottom  | 4.4            | 3       | 2         | 20:43 | 17.8     | 8.1  | 27.8          | 6.97     | 7.57           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR9      | Surface | 1              | 1       | 1         | 20:28 | 17.7     | 7.99 | 27.6          | 7.24     | 7.54           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR9      | Surface | 1              | 1       | 2         | 20:28 | 17.7     | 7.97 | 27.6          | 7.19     | 7.47           | 8.9      |
|         | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR9      | Middle  |                | 2       | 1         | 20:28 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       | SR9      | Middle  |                | 2       | 2         | 20:28 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       |          | Bottom  | 4.6            | 3       | 1         | 20:28 | 17.8     | +    | 27.6          | 7.02     | 7.4            | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       |          | Bottom  | 4.6            | 3       | 2         | 20:28 | 17.8     | +    | 27.6          | 6.97     | 7.5            | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       |          | Surface | 1              | 1       | 1         | 21:05 | 17.7     | -    | 27.6          | 7.36     | 7.35           | 8.2      |
|         | HY/2012/08 | 2015-01-28 | Mid-Ebb   | ,       | Small Wave       |          | Surface | 1              | 1       | 2         | 21:05 | 17.7     |      | 27.5          | 7.36     | 7.28           | 8.3      |
|         | HY/2012/08 | 2015-01-28 | Mid-Ebb   | ,       | Small Wave       |          | Middle  | 6.2            | 2       | 1         | 21:05 | -        |      | 27.5          | 7.25     | 7.2            | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | ,       | Small Wave       |          | Middle  | 6.2            | 2       | 2         | 21:05 | 17.8     |      | 27.7          | 7.22     | 7.27           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | Cloudy  | Small Wave       |          | Bottom  | 11.4           | 3       | 1         | 21:05 |          | -    | 27.7          | 7.12     | 7.66           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-28 | Mid-Ebb   | ,       | Small Wave       | -        | Bottom  | 11.4           | 3       | 2         | 21:05 | 17.9     | 8.07 | 27.8          | 7.09     | 7.74           | 8.5      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Surface | 1              | 1       | 1         | 16:05 | 17.6     | 7.93 | 27.7          | 7.19     | 7.26           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Surface | 1              | 1       | 2         | 16:05 | 17.7     | 7.92 | 27.8          | 7.24     | 7.29           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Middle  | 10.5           | 2       | 1         | 16:05 | 17.6     | 7.94 | 27.9          | 7.3      | 7.51           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Middle  | 10.5           | 2       | 2         | 16:05 | 17.7     | 7.94 | 27.8          | 7.25     | 7.56           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Bottom  | 20             | 3       | 1         | 16:05 | 17.7     | 7.98 | 28            | 7.13     | 7.82           | 8.9      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS4      | Bottom  | 20             | 3       | 2         | 16:05 | 17.6     | 7.98 | 28.1          | 7.09     | 7.91           | 9.1      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Surface | 1              | 1       | 1         | 13:19 | 17.6     | 8.03 | 27.6          | 7.4      | 7.56           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Surface | 1              | 1       | 2         | 13:19 | 17.7     | 8.02 | 27.6          | 7.44     | 7.48           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Middle  | 6.7            | 2       | 1         | 13:19 | 17.6     | 8.02 | 27.8          | 7.33     | 7.35           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Middle  | 6.7            | 2       | 2         | 13:19 | 17.7     | 8.02 | 27.9          | 7.3      | 7.31           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Bottom  | 12.4           | 3       | 1         | 13:19 | 17.6     | 8.08 | 27.7          | 7.25     | 7.68           | 8.8      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | CS6      | Bottom  | 12.4           | 3       | 2         | 13:19 | 17.6     | 8.09 | 27.8          | 7.21     | 7.72           | 8.9      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Surface | 1              | 1       | 1         | 15:22 | 17.5     | +    | 27.5          | 7.5      | 7.37           | 8.1      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Surface | 1              | 1       | 2         | 15:22 | 17.5     | -    | 27.7          | 7.54     | 7.41           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Middle  | 7.7            | 2       | 1         | 15:22 | 17.6     | 8.02 | 27.8          | 7.42     | 7.25           | 8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Middle  | 7.7            | 2       | 2         | 15:22 | 17.6     | 8.03 | 27.8          | 7.45     | 7.31           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Bottom  | 14.4           | 3       | 1         | 15:22 | 17.7     | 8.03 | 27.7          | 7.29     | 7.56           | 8.7      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS12     | Bottom  | 14.4           | 3       | 2         | 15:22 |          |      | 27.8          | 7.25     | 7.59           | 8.5      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS13     | Surface | 1              | 1       | 1         | 15:03 | _        |      | 27.8          | 7.45     | 7.52           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS13     | Surface | 1              | 1       | 2         | 15:03 | 17.7     |      | 27.8          | 7.38     | 7.45           | 8.5      |
|         |            | 2015-01-30 | Mid-Flood | Cloudy  |                  |          |         | 6.2            | 2       | 1         | 15:03 |          | -    | 27.7          | 7.44     | 7.28           | 8.4      |
|         |            | 2015-01-30 | Mid-Flood | ,       |                  |          |         | 6.2            | 2       | 2         | 15:03 | 17.6     |      | 27.9          | 7.42     | 7.32           | 8.3      |
|         |            | 2015-01-30 | Mid-Flood | Cloudy  |                  |          |         | 11.4           | 3       | 1         | 15:03 |          |      | 27.9          | 7.24     | 7.71           | 8.8      |
|         |            | 2015-01-30 | Mid-Flood | Cloudy  |                  |          |         | 11.4           | 3       | 2         | 15:03 |          |      | 28            | 7.21     | 7.63           | 9        |
|         |            | 2015-01-30 | Mid-Flood | ,       |                  | IS14     | Surface | 1              | 1       | 1         | +     | 17.5     |      | 27.8          | 7.39     | 7.37           | 8.1      |
|         | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  |                  |          | Surface | 1              | 1       | 2         | 15:44 | 17.6     |      | 27.7          | 7.32     | 7.41           | 8.3      |
| -       |            | 2015-01-30 | Mid-Flood | Cloudy  |                  | <b>!</b> |         | 8.1            | 2       | 1         | 15:44 | 17.6     |      | 27.7          | 7.4      | 7.53           | 8.4      |
|         | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  |                  | IS14     | Middle  | 8.1            | 2       | 2         | 15:44 | 17.6     |      | 27.6          | 7.44     | 7.46           | 8.8      |
|         |            | 2015-01-30 | Mid-Flood | Cloudy  |                  |          |         | 15.2           | 3       | 1         | 15:44 | 17.7     | _    | 27.7          | 7.2      | 7.64           | 8.7      |
|         | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  |                  |          | Bottom  | 15.2           | 3       | 2         | 15:44 | 17.6     |      | 27.8          | 7.17     | 7.61           | 8.6      |
| -       |            | 2015-01-30 | Mid-Flood | Cloudy  |                  | IS15     | Surface | 1              | 1       | 1         | 14:42 | 17.5     | +    | 27.8          | 7.3      | 7.39           | 8.1      |
|         | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  |                  | IS15     | Surface | 1              | 1       | 2         | 14:42 | 17.6     | _    | 27.7          | 7.34     | 7.45           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  |                  |          | Middle  | 6              | 2       | 1         | 14:42 | 17.6     | +    | 27.7          | 7.39     | 7.26           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS15     | Middle  | 6              | 2       | 2         | 14:42 | 17.5     | 8.03 | 27.7          | 7.44     | 7.31           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | IS15     | Bottom  | 11             | 3       | 1         | 14:42 | 17.7     | 8.05 | 27.8          | 7.16     | 7.64           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | ,       |                  | IS15     | Bottom  | 11             | 3       | 2         | 14:42 | 17.7     | +    | 27.7          | 7.2      | 7.73           | 8.9      |
| TMCLKL  | HY/2012/08 |            | Mid-Flood | _       |                  |          | Surface | 1              | 1       | 1         | 14:12 |          |      | 27.7          | 7.23     | 7.43           | 8.2      |
|         | HY/2012/08 | 2015-01-30 |           | _       | Small Wave       | 1050     | Surface | 1.a            | 1.a     | I a       | 14:12 | 1470     | 100  | 27.8          | 7.26     | 7.51           | 8.3      |

| Project | Works      | Date       | Tide      | Weather | Sea<br>Condition | Stat  | Level             | Water<br>Depth | Lev_Cod   | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L)   |
|---------|------------|------------|-----------|---------|------------------|-------|-------------------|----------------|-----------|-----------|-------|----------|------|---------------|----------|----------------|------------|
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR8   | Middle            | <u> </u>       | 2         | 1         | 14:12 |          |      |               |          |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR8   | Middle            |                | 2         | 2         | 14:12 |          |      |               |          |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR8   | Bottom            | 4.4            | 3         | 1         | 14:12 | 17.6     | 8    | 27.5          | 7.15     | 7.55           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR8   | Bottom            | 4.4            | 3         | 2         | 14:12 | 17.5     | 8.01 | 27.7          | 7.09     | 7.6            | 8.9        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Surface           | 1              | 1         | 1         | 14:26 | 17.5     | 8    | 27.7          | 7.26     | 7.44           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Surface           | 1              | 1         | 2         | 14:26 | 17.6     | 8.02 | 27.8          | 7.35     | 7.51           | 8.7        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Middle            |                | 2         | 1         | 14:26 |          |      |               |          |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Middle            |                | 2         | 2         | 14:26 |          |      |               |          |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Bottom            | 4.6            | 3         | 1         | 14:26 | 17.6     | 7.99 | 27.5          | 7.28     | 7.38           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR9   | Bottom            | 4.6            | 3         | 2         | 14:26 | 17.5     | 7.99 | 27.4          | 7.34     | 7.32           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Surface           | 1              | 1         | 1         | 13:45 | 17.7     | 8.01 | 27.4          | 7.34     | 7.35           | 8.1        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Surface           | 1              | 1         | 2         | 13:45 | 17.7     | 8.02 | 27.5          | 7.31     | 7.41           | 8.3        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Middle            | 7.2            | 2         | 1         | 13:45 | 17.7     | 7.99 | 27.7          | 7.4      | 7.17           | 8          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Middle            | 7.2            | 2         | 2         | 13:45 | 17.6     | 7.98 | 27.7          | 7.44     | 7.22           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Bottom            | 13.4           | 3         | 1         | 13:45 | 17.7     | 8.03 | 27.6          | 7.28     | 7.56           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Flood | Cloudy  | Small Wave       | SR10A | Bottom            | 13.4           | 3         | 2         | 13:45 | 17.8     | 8.03 | 27.7          | 7.24     | 7.62           | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Surface           | 1              | 1         | 1         | 08:20 | 17.5     | 7.91 | 27.6          | 7.08     | 7.4            | 8          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Surface           | 1              | 1         | 2         | 08:20 | 17.6     | 7.92 | 27.7          | 7.12     | 7.32           | 8.2        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Middle            | 10.4           | 2         | 1         | 08:20 | 17.6     | 7.94 | 27.8          | 7.18     | 7.62           | 8.3        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Middle            | 10.4           | 2         | 2         | 08:20 | 17.6     | 7.95 | 27.8          | 7.15     | 7.68           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Bottom            | 21.8           | 3         | 1         | 08:20 | 17.6     | 7.97 | 27.9          | 7        | 7.93           | 9          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS4   | Bottom            | 21.8           | 3         | 2         | 08:20 | 17.7     | 7.98 | 28            | 6.97     | 8.01           | 9.3        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS6   | Surface           | 1              | 1         | 1         | 11:00 | 17.7     | 8.03 | 27.6          | 7.28     | 7.68           | 8.7        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS6   | Surface           | 1              | 1         | 2         | 11:00 | 17.6     | 8.04 | 27.5          | 7.3      | 7.6            | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS6   | Middle            | 6.6            | 2         | 1         | 11:00 | 17.7     | 8.01 | 27.7          | 7.22     | 7.47           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS6   | Middle            | 6.6            | 2         | 2         | 11:00 | 17.7     | 8.01 | 27.7          | 7.19     | 7.42           | 8.2        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | CS6   | Bottom            | 12.2           | 3         | 1         | 11:00 | 17.7     | 8.07 | 27.7          | 7.14     | 7.79           | 9.1        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  |                  | CS6   | +                 | 12.2           | 3         | 2         | 11:00 | 17.7     | _    | 27.8          | 7.11     | 7.84           | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Surface           | 1              | 1         | 1         | 09:00 | 17.4     | _    | 27.6          | 7.38     | 7.49           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Surface           | 1              | 1         | 2         | 09:00 | 17.5     |      | 27.7          | 7.41     | 7.55           | 8.7        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Middle            | 7.6            | 2         | 1         | 09:00 | 17.5     | _    | 27.7          | 7.32     | 7.36           | 8          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Middle            | 7.6            | 2         | 2         | 09:00 | 17.6     |      | 27.8          | 7.3      | 7.42           | 8.3        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Bottom            | 14.2           | 3         | 1         | 09:00 | 17.7     | _    | 27.8          | 7.19     | 7.68           | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS12  | Bottom            | 14.2           | 3         | 2         | 09:00 | 17.7     | _    | 27.9          | 7.14     | 7.71           | 8.9        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Surface           | 1              | 1         | 1         | 09:20 | 17.5     | _    | 27.7          | 7.23     | 7.63           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Surface           | 1              | 1         | 2         | 09:20 | 17.6     | _    | 27.8          | 7.28     | 7.58           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Middle            | 6.1            | 2         | 1         | 09:20 | 17.6     | _    | 27.8          | 7.34     | 7.5            | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Middle            | 6.1            | 2         | 2         | 09:20 | 17.6     | 2    | 27.8          | 7.31     | 7.43           | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Bottom            | 11.2           | 3         | 1         | 09:20 | 17.7     | 8.01 | 27.8          | 7.12     | 7.82           | 8.9        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS13  | Bottom            | 11.2           | 3         | 2         | 09:20 | 17.7     |      |               | 7.12     | 7.75           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Surface           | 1              | 1         | 1         | 08:40 | 17.7     |      | 27.6          | 7.1      | 7.48           | 8.2        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Surface           | <u>'</u><br> 1 | 1         | 2         | 08:40 | 17.5     |      | 27.6          | 7.2      | 7.53           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Middle            | la<br>la       | 2         | 11        | 08:40 | 17.6     |      |               | 7.28     | 7.64           | 8.8        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Middle            | 8              | 2         | 2         | 08:40 | 17.6     |      | 27.7          | 7.31     | 7.59           | 8.5        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Bottom            | 15             | 3         | 11        | 08:40 | 17.6     |      |               | 7.08     | 7.78           | 8.7        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Bottom            | 15             | 3         | 2         | 08:40 | 17.7     | _    | 27.8          | 7.05     | 7.74           | 8.9        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS14  | Surface           | 1              | 1         | 11        | 09:40 | 17.6     | _    | 27.6          | 7.05     | 7.5            | 8.4        |
| TMCLKL  | HY/2012/08 |            | Mid-Ebb   | Cloudy  |                  | IS15  | +                 | 1              | 11        | 12        | _     |          | 8    | 27.7          | 7.17     | 7.57           |            |
|         |            | 2015-01-30 |           |         | Small Wave       |       | Surface<br>Middle | 5.0            | 12        | 1         | 09:40 | 17.6     | 8.01 |               |          | 7.38           | 8.1<br>8.2 |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS15  |                   | 5.9            | 2         | 12        | 09:40 | 17.6     |      | 27.7          | 7.28     |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS15  | Middle            | 5.9            | 2         |           | 09:40 | 17.6     |      | 27.7          | 7.3      | 7.44           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS15  | Bottom            | 10.8           | <u>၂</u>  | 10        | 09:40 | 17.7     | _    | 27.8          | 7.05     | 7.76           | 8.6        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | IS15  | Bottom            | 10.8           | <u>ال</u> | 2         | 09:40 | 17.7     |      | 27.7          | 7.07     | 7.85           | 9          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | SR8   | Surface           |                |           | 10        | 10:13 | 17.6     |      | 27.6          | 7.09     | 7.56           | 8.2        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | SR8   | Surface           | 1              | 11        | 12        | 10:13 | 17.6     | 8.05 | 27.6          | 7.11     | 7.63           | 8.3        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | SR8   | Middle            |                | 2         | 11        | 10:13 |          | +    | 1             |          | -              |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | SR8   | Middle            |                | 2         | 2         | 10:13 | 1        |      | ļ             | 1        |                |            |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  |                  | SR8   |                   | 4.2            | [3        | 11        |       | 17.6     |      | 27.6          | 7.03     | 7.68           | 8.4        |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb   | Cloudy  | Small Wave       | SR8   | Bottom            | 4.2            | 3         | [2        | 10:13 | 17.6     | 8.02 | 27.6          | 6.98     | 7.73           | 8.6        |

| Project | Works      | Date       | Tide    | Weather | Sea<br>Condition | Stat  | Level   | Water<br>Depth | Lev_Cod | Replicate | Time  | Temp(°C) | рН   | Salinity(ppt) | DO(mg/L) | Turbidity(NTU) | SS(mg/L) |
|---------|------------|------------|---------|---------|------------------|-------|---------|----------------|---------|-----------|-------|----------|------|---------------|----------|----------------|----------|
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Surface | 1              | 1       | 1         | 09:59 | 17.6     | 8.01 | 27.5          | 7.14     | 7.57           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Surface | 1              | 1       | 2         | 09:59 | 17.6     | 8.03 | 27.6          | 7.13     | 7.65           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Middle  |                | 2       | 1         | 09:59 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Middle  |                | 2       | 2         | 09:59 |          |      |               |          |                |          |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Bottom  | 4.4            | 3       | 1         | 09:59 | 17.6     | 7.98 | 27.6          | 7.18     | 7.5            | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR9   | Bottom  | 4.4            | 3       | 2         | 09:59 | 17.6     | 7.99 | 27.6          | 7.21     | 7.44           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Surface | 1              | 1       | 1         | 10:35 | 17.6     | 8.02 | 27.5          | 7.23     | 7.47           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Surface | 1              | 1       | 2         | 10:35 | 17.7     | 8.01 | 27.5          | 7.2      | 7.53           | 8.4      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Middle  | 7.1            | 2       | 1         | 10:35 | 17.7     | 7.98 | 27.6          | 7.28     | 7.28           | 8.2      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Middle  | 7.1            | 2       | 2         | 10:35 | 17.7     | 7.99 | 27.6          | 7.31     | 7.33           | 8.3      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Bottom  | 13.2           | 3       | 1         | 10:35 | 17.7     | 8.04 | 27.7          | 7.17     | 7.68           | 8.6      |
| TMCLKL  | HY/2012/08 | 2015-01-30 | Mid-Ebb | Cloudy  | Small Wave       | SR10A | Bottom  | 13.2           | 3       | 2         | 10:35 | 17.8     | 8.05 | 27.7          | 7.14     | 7.75           | 8.9      |

Appendix J

Impact Dolphin Monitoring Survey

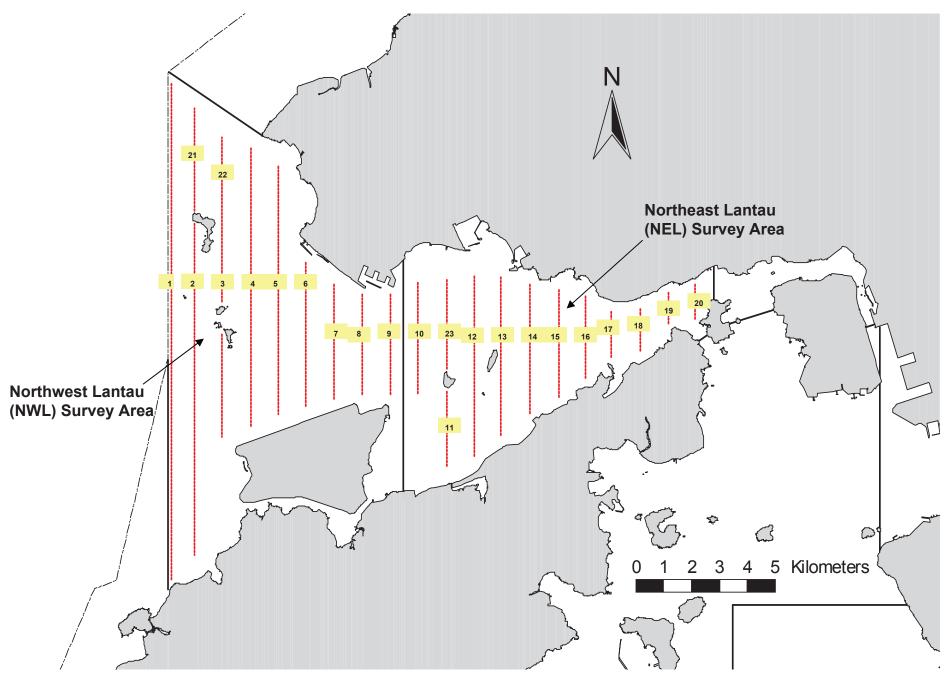



Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

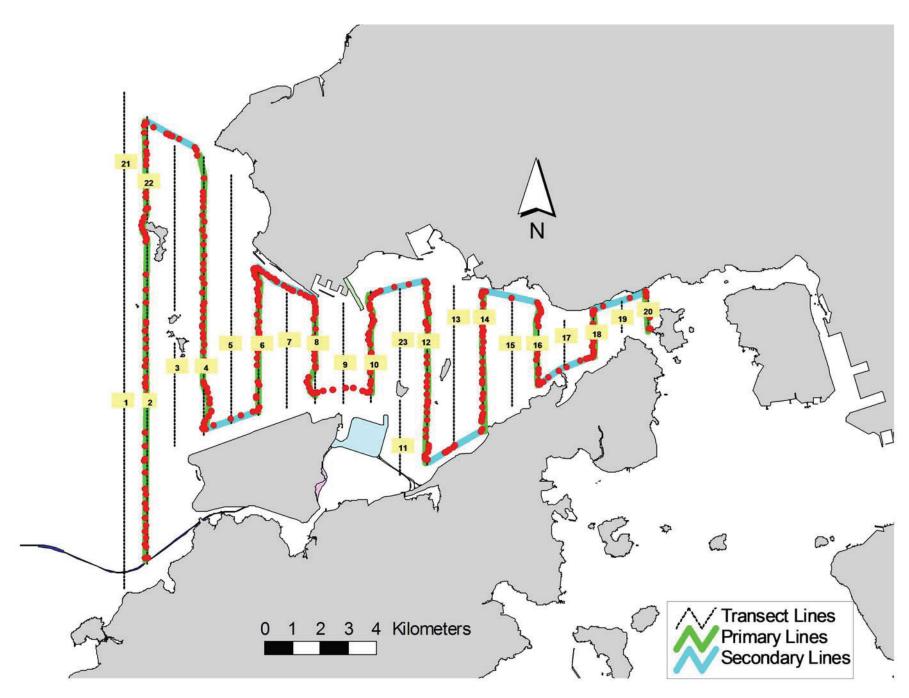



Figure 2. Survey Route on January 8th, 2015 (from HKLR03 project)

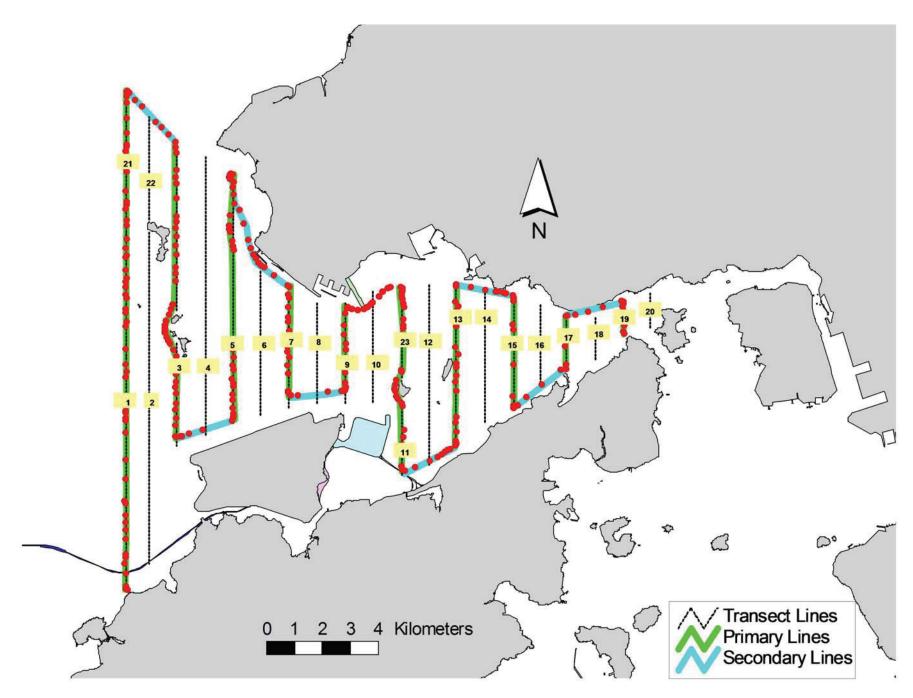



Figure 3. Survey Route on January 15th, 2015 (from HKLR03 project)

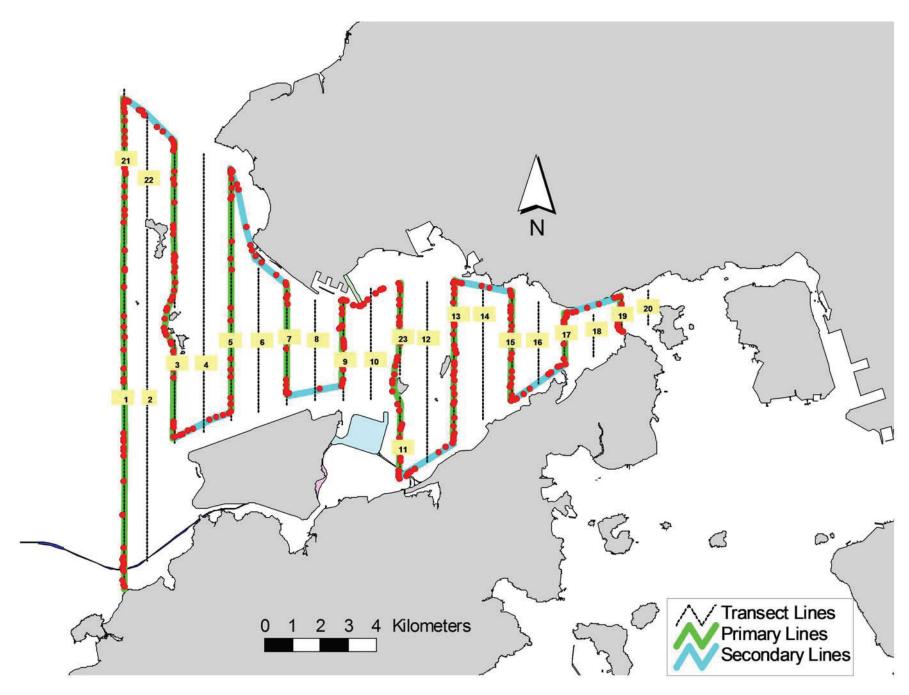



Figure 4. Survey Route on January 27th, 2015 (from HKLR03 project)

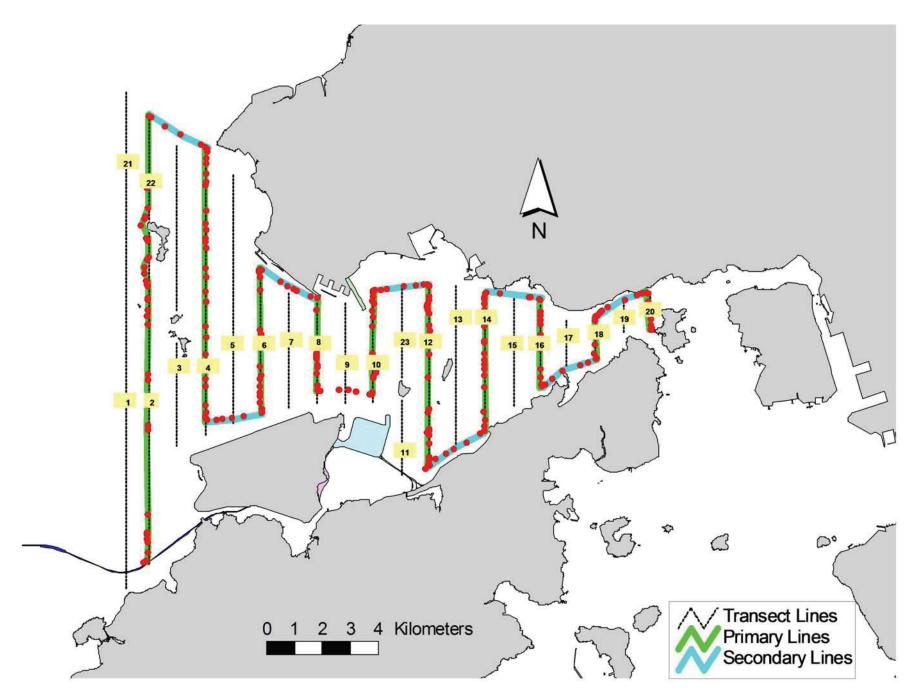



Figure 5. Survey Route on January 29th, 2015 (from HKLR03 project)

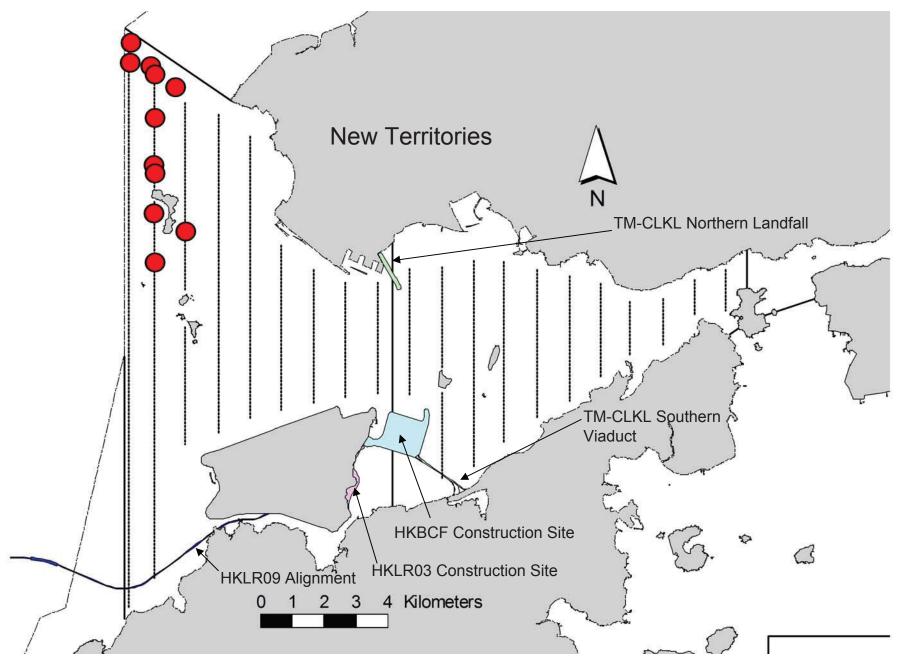



Figure 6. Distribution of Chinese White Dolphin Sightings During January 2015 HKLR03 Monitoring Surveys

#### Appendix I. HKLR03 Survey Effort Database (January 2015)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

| DATE      | AREA             | BEAU | EFFORT | SEASON | VESSEL        | TYPE | P/S |
|-----------|------------------|------|--------|--------|---------------|------|-----|
| 8-Jan-15  | NE LANTAU        | 2    | 20.00  | WINTER | STANDARD31516 | HKLR | Р   |
| 8-Jan-15  | NE LANTAU        | 2    | 10.40  | WINTER | STANDARD31516 | HKLR | S   |
| 8-Jan-15  | NW LANTAU        | 2    | 10.06  | WINTER | STANDARD31516 | HKLR | Р   |
| 8-Jan-15  | NW LANTAU        | 3    | 21.99  | WINTER | STANDARD31516 | HKLR | Р   |
| 8-Jan-15  | NW LANTAU        | 2    | 5.53   | WINTER | STANDARD31516 | HKLR | S   |
| 8-Jan-15  | <b>NW LANTAU</b> | 3    | 1.94   | WINTER | STANDARD31516 | HKLR | S   |
| 15-Jan-15 | NW LANTAU        | 2    | 0.89   | WINTER | STANDARD31516 | HKLR | Р   |
| 15-Jan-15 | <b>NW LANTAU</b> | 3    | 36.39  | WINTER | STANDARD31516 | HKLR | Р   |
| 15-Jan-15 | <b>NW LANTAU</b> | 2    | 1.05   | WINTER | STANDARD31516 | HKLR | S   |
| 15-Jan-15 | <b>NW LANTAU</b> | 3    | 11.06  | WINTER | STANDARD31516 | HKLR | S   |
| 15-Jan-15 | NE LANTAU        | 2    | 9.56   | WINTER | STANDARD31516 | HKLR | Р   |
| 15-Jan-15 | NE LANTAU        | 3    | 7.91   | WINTER | STANDARD31516 | HKLR | Р   |
| 15-Jan-15 | NE LANTAU        | 2    | 8.56   | WINTER | STANDARD31516 | HKLR | S   |
| 15-Jan-15 | NE LANTAU        | 3    | 1.17   | WINTER | STANDARD31516 | HKLR | S   |
| 27-Jan-15 | NE LANTAU        | 2    | 10.35  | WINTER | STANDARD31516 | HKLR | Р   |
| 27-Jan-15 | NE LANTAU        | 3    | 7.00   | WINTER | STANDARD31516 | HKLR | Р   |
| 27-Jan-15 | NE LANTAU        | 2    | 6.55   | WINTER | STANDARD31516 | HKLR | S   |
| 27-Jan-15 | NE LANTAU        | 3    | 3.90   | WINTER | STANDARD31516 | HKLR | S   |
| 27-Jan-15 | NW LANTAU        | 2    | 10.38  | WINTER | STANDARD31516 | HKLR | Р   |
| 27-Jan-15 | NW LANTAU        | 3    | 26.22  | WINTER | STANDARD31516 | HKLR | Р   |
| 27-Jan-15 | NW LANTAU        | 4    | 3.10   | WINTER | STANDARD31516 | HKLR | Р   |
| 27-Jan-15 | NW LANTAU        | 2    | 7.53   | WINTER | STANDARD31516 | HKLR | S   |
| 27-Jan-15 | NW LANTAU        | 3    | 4.15   | WINTER | STANDARD31516 | HKLR | S   |
| 27-Jan-15 | NW LANTAU        | 4    | 0.80   | WINTER | STANDARD31516 | HKLR | S   |
| 29-Jan-15 | NW LANTAU        | 1    | 1.41   | WINTER | STANDARD31516 | HKLR | Р   |
| 29-Jan-15 | NW LANTAU        | 2    | 15.47  | WINTER | STANDARD31516 | HKLR | Р   |
| 29-Jan-15 | NW LANTAU        | 3    | 13.03  | WINTER | STANDARD31516 | HKLR | Р   |
| 29-Jan-15 | NW LANTAU        | 1    | 2.34   | WINTER | STANDARD31516 | HKLR | S   |
| 29-Jan-15 | NW LANTAU        | 2    | 4.25   | WINTER | STANDARD31516 | HKLR | S   |
| 29-Jan-15 | NW LANTAU        | 3    | 0.60   | WINTER | STANDARD31516 | HKLR | S   |
| 29-Jan-15 | NE LANTAU        | 1    | 4.67   | WINTER | STANDARD31516 | HKLR | Р   |
| 29-Jan-15 | NE LANTAU        | 2    | 15.57  | WINTER | STANDARD31516 | HKLR | Р   |
| 29-Jan-15 | NE LANTAU        | 2    | 10.56  | WINTER | STANDARD31516 | HKLR | S   |
|           |                  |      |        |        |               |      |     |

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (January 2015)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

| DATE      | STG# | TIME | HRD SZ | AREA      | BEAU | PSD | EFFORT | TYPE | NORTHING | EASTING | SEASON | BOAT ASSOC. | P/S |
|-----------|------|------|--------|-----------|------|-----|--------|------|----------|---------|--------|-------------|-----|
| 8-Jan-15  | 1    | 1355 | 1      | NW LANTAU | 2    | 148 | ON     | HKLR | 830029   | 806123  | WINTER | NONE        | S   |
| 8-Jan-15  | 2    | 1421 | 8      | NW LANTAU | 3    | 556 | ON     | HKLR | 827716   | 805449  | WINTER | NONE        | Р   |
| 15-Jan-15 | 1    | 1132 | 2      | NW LANTAU | 3    | 189 | ON     | HKLR | 830762   | 804693  | WINTER | NONE        | Р   |
| 15-Jan-15 | 2    | 1143 | 5      | NW LANTAU | 3    | 24  | ON     | HKLR | 831349   | 804705  | WINTER | NONE        | Р   |
| 15-Jan-15 | 3    | 1156 | 3      | NW LANTAU | 3    | 464 | ON     | HKLR | 830673   | 805331  | WINTER | NONE        | S   |
| 27-Jan-15 | 1    | 1409 | 2      | NW LANTAU | 3    | 163 | ON     | HKLR | 825753   | 806454  | WINTER | NONE        | S   |
| 27-Jan-15 | 2    | 1442 | 3      | NW LANTAU | 3    | 410 | ON     | HKLR | 830429   | 805475  | WINTER | NONE        | Р   |
| 29-Jan-15 | 1    | 1104 | 4      | NW LANTAU | 3    | 63  | ON     | HKLR | 824825   | 805464  | WINTER | NONE        | Р   |
| 29-Jan-15 | 2    | 1128 | 6      | NW LANTAU | 2    | 143 | ON     | HKLR | 826287   | 805456  | WINTER | NONE        | Р   |
| 29-Jan-15 | 3    | 1150 | 7      | NW LANTAU | 2    | 343 | ON     | HKLR | 827483   | 805469  | WINTER | NONE        | Р   |
| 29-Jan-15 | 4    | 1208 | 5      | NW LANTAU | 2    | 143 | ON     | HKLR | 829122   | 805472  | WINTER | NONE        | Р   |
|           |      |      |        |           |      |     |        |      |          |         |        |             |     |

# Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in January 2015

| ID#   | DATE     | STG# | AREA      |
|-------|----------|------|-----------|
| CH34  | 15/01/15 | 1    | NW LANTAU |
|       | 15/01/15 | 2    | NW LANTAU |
|       | 29/01/15 | 4    | NW LANTAU |
| NL48  | 15/01/15 | 3    | NW LANTAU |
| NL98  | 15/01/15 | 2    | NW LANTAU |
| NL103 | 29/01/15 | 2    | NW LANTAU |
| NL104 | 08/01/15 | 2    | NW LANTAU |
| NL123 | 08/01/15 | 2    | NW LANTAU |
| NL145 | 08/01/15 | 2    | NW LANTAU |
|       | 29/01/15 | 2    | NW LANTAU |
| NL182 | 15/01/15 | 1    | NW LANTAU |
|       | 15/01/15 | 2    | NW LANTAU |
| NL202 | 08/01/15 | 2    | NW LANTAU |
| NL210 | 29/01/15 | 2    | NW LANTAU |
| NL259 | 15/01/15 | 3    | NW LANTAU |
| NL261 | 08/01/15 | 2    | NW LANTAU |
| NL284 | 15/01/15 | 2    | NW LANTAU |
|       | 29/01/15 | 2    | NW LANTAU |
| NL285 | 08/01/15 | 2    | NW LANTAU |
| NL286 | 08/01/15 | 2    | NW LANTAU |
| NL287 | 29/01/15 | 1    | NW LANTAU |
| NL305 | 29/01/15 | 2    | NW LANTAU |
| NL306 | 29/01/15 | 1    | NW LANTAU |
| NL307 | 29/01/15 | 1    | NW LANTAU |
| WL17  | 27/01/15 | 1    | NW LANTAU |
| WL231 | 29/01/15 | 2    | NW LANTAU |



Appendix IV. Photographs of Identified Individual Dolphins in January 2015 (HKLR03)



Appendix IV. (cont'd)



Appendix IV. (cont'd)

### Appendix K

## Event and Action Plan

#### Event and Action Plan for Impact Air Monitoring

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Action                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                              |                |                                                                                                                                                                                                                                                                  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | ET (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | IEC (a)                                                                                                                                                                                                                                                                                                                              |                | SOR (a)                                                                                                                      |                | Contractor(s)                                                                                                                                                                                                                                                    |
| <b>Action Level Exceedance</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                              |                |                                                                                                                                                                                                                                                                  |
| 1. 2. 3. 4. 5. 6. 7.           | Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the exceedance is then confirmed. Inform the IEC and the SOR. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC and the SOR. | 1.<br>2.<br>3. | Check monitoring data submitted by the ET. Check the Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of | 1.<br>2.<br>3. | Confirm receipt of notification of failure in writing. Notify the Contractor. Ensure remedial measures properly implemented. | 1.<br>2.<br>3. | Rectify any unacceptable practice Amend working methods if appropriate If the exceedance is confirmed to be Project related, submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if |
| 8.                             | If exceedance stops, cease additional monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | remedial measures.                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                              |                | appropriate                                                                                                                                                                                                                                                      |

| imit Level Exceedance                            | ET (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                    | IEC (a)                                                                                                                                                                                                                                                                                                                                             | COD (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | - · · · / \                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| imit Lovel Evcoedance                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                    | IEC (#)                                                                                                                                                                                                                                                                                                                                             | SOR (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | Contractor(s)                                                                                                                                                                                                                                                                                                                                                     |
| mint Level Exceedance                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                                                                                                                                                                                                                                                                                                                   |
| 1. I 2. I t t 1 3. I 6. C 1 5. I 7. A 1 t 8. A 1 | Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Limit Level, the exceedance is then confirmed. Inform the IEC, the SOR, the DEP and the Contractor. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented. Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken. Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. | 1.<br>2.<br>3.<br>4. | Check monitoring data submitted by the ET. Check Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. | Confirm receipt of notification of failure in writing. Notify the Contractor. If the exceedance is confirmed to be Project related after investigation, in consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated. | <ol> <li>1.</li> <li>2.</li> <li>4.</li> <li>5.</li> </ol> | Take immediate action to avoid further exceedance. If the exceedance is confirmed to be Projected after investigation, submit proposals for remediate actions to IEC within working days of notification. Implement the agreed proposals. Amend proposal if appropriate. Stop the relevant activity of works as determined by the SC until the exceedance abated. |

Note: (a) ET - Environmental Team; IEC - Independent Environmental Checker; SOR - Supervising Officer's Representative

#### Event & Action Plan for Impact Water Quality Monitoring

| Event                                                                | ET I                                                                                           | eader                                                                                                                                                                                                                                                                                                                                                                                                          | IEC                                            |                                                                                                                                                                                                                                                                                             | SO                                 | R                                                                                                                                                                             | Coı                                | ntractor                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action level being exceeded by one sampling day                      | 1.<br>2.<br>3.<br>4.                                                                           | Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings;  Identify source(s) of impact;  Inform IEC, contractor and SOR;  Check monitoring data, all plant, equipment and Contractor's working methods.                                                                                                                                                                                | 1.                                             | Check monitoring data submitted by ET and Contractor's working methods.                                                                                                                                                                                                                     | 2.                                 | Confirm receipt of notification of non-compliance in writing:  Notify Contractor.                                                                                             | <ol> <li>2.</li> <li>3.</li> </ol> | Inform the SOR and confirm notification of the non-compliance in writing;  Rectify unacceptable practice;  Amend working methods if appropriate.                                                                                                                                                                                                                                |
| Action level being exceeded by two or more consecutive sampling days | <ol> <li>1.</li> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> <li>7.</li> </ol> | Repeat measurement on next day of exceedance to confirm findings;  Identify source(s) of impact;  Inform IEC, Contractor, SOR and EPD;  Check monitoring data, all plant, equipment and Contractor's working methods;  Discuss mitigation measures with IEC, SOR and Contractor;  Ensure mitigation measures are implemented;  Increase the monitoring frequency to daily until no exceedance of Action level; | <ol> <li>2.</li> <li>3.</li> <li>4.</li> </ol> | Check monitoring data submitted by ET and Contractor's working method;  Discuss with ET and Contractor on possible remedial actions;  Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;  Supervise the implementation of mitigation measures. | <ol> <li>2.</li> <li>3.</li> </ol> | Discuss with IEC on the proposed mitigation measures;  Ensure mitigation measures are properly implemented;  Assess the effectiveness of the implemented mitigation measures. | 2.                                 | Inform the Supervising Officer and confirm notification of the non- compliance in writing;  Rectify unacceptable practice;  Check all plant and equipment and consider changes of working methods;  Submit proposal of additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;  Implement the agreed mitigation measures. |
| Limit level being exceeded                                           | 1.                                                                                             | Repeat measurement on next day of                                                                                                                                                                                                                                                                                                                                                                              | 1.                                             | Check monitoring data                                                                                                                                                                                                                                                                       | 1.                                 | Confirm receipt of                                                                                                                                                            | 1.                                 | Inform the SOR and                                                                                                                                                                                                                                                                                                                                                              |
| by one sampling day                                                  | $\perp$                                                                                        | exceedance to confirm findings;                                                                                                                                                                                                                                                                                                                                                                                |                                                | submitted by ET and                                                                                                                                                                                                                                                                         |                                    | notification of failure in                                                                                                                                                    |                                    | confirm notification of the                                                                                                                                                                                                                                                                                                                                                     |

| Event                                                               | ET Leader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IEC                                                                                                                                                                                                                                                    | SOR                                                                                                                                                                                                                                                                      | Contractor                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ol> <li>Identify source(s) of imp</li> <li>Inform IEC, Contractor, EPD;</li> <li>Check monitoring data, equipment and Contract methods;</li> <li>Discuss mitigation measure. SOR and Contractor</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOR and  2. Discuss with E Contractor on premedial action all plant, sor's working  3. Review the promitigation measubmitted by Cadvise the SOR                                                                                                        | 2. Discuss with IEC, ET and Contractor on the proposition measures; as; 3. Request Contractor to review the working methods.                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                              |
| Limit level being exceeded by two or more consecutive sampling days | <ol> <li>Repeat measurement on exceedance to confirm fit</li> <li>Identify source(s) of imp</li> <li>Inform IEC, contractor, SEPD;</li> <li>Check monitoring data, equipment and Contract methods;</li> <li>Discuss mitigation measuremeth of the contract of the contract</li></ol> | submitted by E Contractor's we method;  SOR and  2. Discuss with E Contractor on p remedial action  all plant, tor's working 3. Review the Con mitigation mea whenever nece their effectiven the SOR accord  4. Supervise the implementation measures. | T and Orking  Contractor on the propose mitigation measures;  2. Request Contractor to critically review the working methods;  ss;  3. Make agreement on the mitigation measures to be implemented;  ssary to assure ess and advise ingly;  5. Consider and instruct, if | avoid further exceedance;  2. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;  a. Implement the agreed mitigation measures;  4. Resubmit proposals of mitigation measures if problem still not under control;  a to or  5. As directed by the Supervising Officer, to slow down or to stop all or part |

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

#### Event/Action Plan for Impact Dolphin Monitoring

| EVENT        | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|              | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IEC                                                                                                                                                                                                                | SOR                                                                                                                                                                                                                                             | Contractor                                                                                                                                                                                                                  |  |  |  |  |  |
| Action Level | <ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor;</li> <li>Check monitoring data.</li> <li>Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> </ol> | <ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and finding with the ET and the Contractor.</li> </ol>                                                          | <ol> <li>Discuss monitoring with the IEC and any other measures proposed by the ET;</li> <li>If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented.</li> </ol> | <ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Discuss with the ET and the IEC and propose measures to the IEC and the SOR;</li> <li>Implement the agreed measures.</li> </ol> |  |  |  |  |  |
| Limit Level  | <ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> </ol>                                                                                                                                                                                                                                                                      | <ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and findings with the ET and the Contractor;</li> <li>Attend the meeting to discuss with ET, SOR and</li> </ol> | <ol> <li>Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.</li> <li>If SOR is satisfied with the</li> </ol>                                 | <ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other</li> </ol>      |  |  |  |  |  |

| EVENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IEC                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOR                                                                                                                                                                                                                                                                                                                               | Contractor                                                                                                                                                                                                                                                     |
|       | <ol> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor of findings;</li> <li>Check monitoring data;</li> <li>Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> <li>If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.</li> </ol> | Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.  4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly.  5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly. | proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures.  3. Supervise the implementation of additional monitoring and/or any other mitigation measures. | potential mitigation measures.  3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary.  4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures. |

Note: ET – Environmental Team, IEC – Independent Environmental Checker, SOR – Supervising Officer's Representative

#### Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table L1
 Cumulative Statistics on Exceedances

| Parameters     | Level of Exceedance | Total No. recorded in this reporting month | Total No. recorded since project commencement |
|----------------|---------------------|--------------------------------------------|-----------------------------------------------|
| 1-hr TSP       | Action              | 0                                          | 30                                            |
|                | Limit               | 0                                          | 2                                             |
| 24-hr TSP      | Action              | 0                                          | 5                                             |
|                | Limit               | 0                                          | 1                                             |
| Water Quality  | Action              | 0                                          | 6                                             |
|                | Limit               | 0                                          | 1                                             |
| Impact Dolphin | Action              | 0                                          | 7                                             |
| Monitoring     | Limit               | 0                                          | 0                                             |

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

| Reporting Period                              |            | Cumulative Statistics |              |  |  |  |
|-----------------------------------------------|------------|-----------------------|--------------|--|--|--|
| _                                             | Complaints | Notifications of      | Successful   |  |  |  |
|                                               |            | Summons               | Prosecutions |  |  |  |
| This Reporting Month (January 2015)           | 0          | 0                     | 0            |  |  |  |
| Total No. received since project commencement | 4          | 0                     | 0            |  |  |  |

### Appendix M

# Waste Flow Table



**Monthly Summary Waste Flow Table** 

Name of Department: HyD Contract No. / Works Order No.: HY/2012/08

**Monthly Summary Waste Flow Table for** <u>January 2015</u> [to be submitted not later than the 15<sup>th</sup> day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

|                          | I                                            | Monthly Break-down of <u>Inert</u> Construct | ion & Demolition Materi       | als (i.e. Public Fill Materials | )                                 |  |
|--------------------------|----------------------------------------------|----------------------------------------------|-------------------------------|---------------------------------|-----------------------------------|--|
| Month                    | (a)=(b)+(c)+(d)+(e) Total Quantity Generated | (b) Hard Rock and Large Broken Concrete      | (c)<br>Reused in the Contract | (d)<br>Reused in other Projects | (e)<br>Disposed of as Public Fill |  |
|                          | (in '000 ton)                                | (in '000 ton)                                | (in '000 ton)                 | (in '000 ton)                   | (in '000 ton)                     |  |
| Sub-total                | 64.216                                       | 0.000                                        | 0.000                         | 0.000                           | 64.216                            |  |
| Jan-2015                 | 30.877                                       | 0.000                                        | 0.000                         | 0.000                           | 30.877                            |  |
| Feb-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Mar-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Apr-2015                 |                                              |                                              |                               |                                 |                                   |  |
| May-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Jun-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Half Year Sub-total      |                                              |                                              |                               |                                 |                                   |  |
| Jul-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Aug-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Sep-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Oct-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Nov-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Dec-2015                 |                                              |                                              |                               |                                 |                                   |  |
| Project Total Quantities | 95.093                                       | 0.000                                        | 0.000                         | 0.000                           | 95.093                            |  |

|                          |           |                      | Actu        | al Quantities of ] | Non-inert Cons        | struction Waste | Generated Mon | thly     |                                                        |  |
|--------------------------|-----------|----------------------|-------------|--------------------|-----------------------|-----------------|---------------|----------|--------------------------------------------------------|--|
| Month                    | Ме        | Metals Paper/ cardbo |             |                    | Plastics (see Note 3) |                 |               | al Waste | Others, e.g. General<br>Refuse disposed at<br>Landfill |  |
|                          | (in '0    | 000kg)               | (in '000kg) |                    | (in '(                | 000kg)          | (in '0        | 00kg)    | (in '000ton)                                           |  |
|                          | generated | recycled             | generated   | recycled           | generated             | recycled        | generated     | Disposed | generated                                              |  |
| Sub-total                | 0.000     | 0.000                | 1.050       | 1.050              | 0.000                 | 0.000           | 0.110         | 0.110    | 0.605                                                  |  |
| Jan-2015                 | 0.000     | 0.000                | 0.000       | 0.000              | 0.000                 | 0.000           | 0.000         | 0.000    | 0.080                                                  |  |
| Feb-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Mar-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Apr-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| May-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Jun-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Half Year Sub-total      |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Jul-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Aug-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Sep-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Oct-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Nov-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Dec-2015                 |           |                      |             |                    |                       |                 |               |          |                                                        |  |
| Project Total Quantities | 0.000     | 0.000                | 1.050       | 1.050              | 0.000                 | 0.000           | 0.110         | 0.110    | 0.685                                                  |  |



| Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract* |                                        |                           |                             |                               |               |                             |                             |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|-----------------------------|-------------------------------|---------------|-----------------------------|-----------------------------|--|--|
| Total Quantity Generated                                                                                 | Hard Rock and Large<br>Broken Concrete | Reused in the<br>Contract | Reused in other<br>Projects | Disposed of as<br>Public Fill | Imported Fill | Marine Disposal<br>(Cat. L) | Marine Disposal<br>(Cat. M) |  |  |
| (in '000 ton)                                                                                            | (in '000 ton)                          | (in '000 ton)             | (in '000 ton)               | (in '000 ton)                 | (in '000 ton) | (in '000 m <sup>3</sup> )   | (in '000 m <sup>3</sup> )   |  |  |
| 5.000                                                                                                    | 0.000                                  | 0.000                     | 0.000                       | 5.000                         | 180.000       | 5.000                       | 40.000                      |  |  |

| Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract* |                            |                       |                |                                        |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------------|----------------------------------------|--|--|--|
| Metals                                                                                                   | Paper/ cardboard packaging | Plastics (see Note 3) | Chemical Waste | General Refuse disposed of at Landfill |  |  |  |
| (in '000kg)                                                                                              | (in '000kg)                | (in '000kg)           | (in '000kg)    | (in '000m <sup>3</sup> )               |  |  |  |
| 0.000                                                                                                    | 0.050                      | 0.000                 | 0.000          | 0.100                                  |  |  |  |

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m<sup>3</sup>. (**ER Part 8 Clause 8.8.5** (d) (ii) refers).