ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR K.W. FAN WORK ORDER HK1864495

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG SUB-BATCH : 1

KONG DATE RECEIVED : 11-DEC-2018

DATE OF ISSUE : 28-DEC-2018

PROJECT : --- NO. OF SAMPLES : 1

CLIENT ORDER : ---

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK1864495

SUB-BATCH

CLIENT PROJECT

1 : ENVIROTECH SERVICES CO.

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK1864495-001	S/N: 235780	Equipments	11-Dec-2018	S/N: 235780	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

235780

Equipment Ref:

Nil

Job Order

HK1864495

Standard Equipment:

Standard Equipment:

Higher Volume Sampler

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

21 September 2018

Equipment Verification Results:

Testing Date:

17&18 December 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr03min	12:20 ~ 14:23	18.0	1022.2	0.038	2557	20.9
2hr14min	09:11 ~ 11:25	18.1	1022.2	0.029	2891	21.6
2hr14min	11:33 ~ 13:47	18.1	1022.2	0.047	3379	25.3

0.045

0.035

0.025

0.02

0.015

0.01

y = 0.0017x - 0.0006

 $R^2 = 0.9366$

Linear Regression of Y or X

Slope (K-factor):

0.0017

Correlation Coefficient

0.9678

Date of Issue

28 December 2018

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0017 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : Fai So Signature : Date : 28 December 2018

QC Reviewer : Ben Tam Signature : Date : 28 December 2018

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Sep-18
Location ID: Calibration Room Next Calibration Date: 21-Dec-18

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1011.6 29.2

Corrected Pressure (mm Hg)
Temperature (K)

758.7 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.632	56	55.56	Slope = 37.2548
13	4.3	4.3	8.6	1.459	48	47.62	Intercept = -5.5606
10	3.3	3.3	6.6	1.280	43	42.66	Corr. coeff. $=$ 0.9970
8	2.1	2.1	4.2	1.025	34	33.73	
5	1.3	1.3	2.6	0.810	24	23.81	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

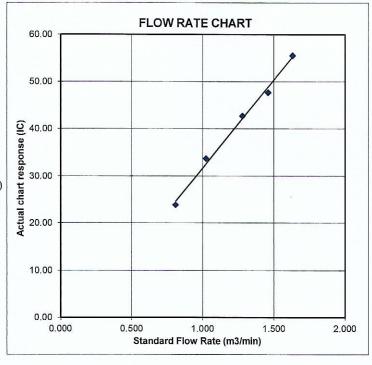
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

February 13, 2019

Pertificate of

Calibration Certification Information

Cal. Date: February 13, 2018 Rootsmeter S/N: 438320

Ta: 293

Pa: 763.3

°K

mm Hg

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation											
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)							
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)							
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762							
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392							
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854							
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530							
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524							
	m=	2.02017		m=	1.26500							
QSTD	b=	-0.03691	QA	b=	-0.02263							
	r=	0.99988	•	r=	0.99988							

	Calculation	S
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime
	For subsequent flow rat	e calculations:
Qstd=	$1/m \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right)$	$Qa = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmet	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

WORK ORDER

HK1864496

CLIENT

: ENVIROTECH SERVICES CO.

: 1

ADDRESS

PROJECT

: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG SUB-BATCH

: 11-DEC-2018

KONG

DATE RECEIVED DATE OF ISSUE

: 28-DEC-2018

NO. OF SAMPLES

: 1

CLIENT ORDER

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK1864496

SUB-BATCH

CLIENT PROJECT : 1 : ENVIROTECH SERVICES CO.

: ___

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK1864496-001	S/N: 6Z7784	Equipments	11-Dec-2018	S/N: 6Z7784	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

6Z7784

Equipment Ref:

Nil

Job Order

HK1864496

Standard Equipment:

Standard Equipment:

Higher Volume Sampler

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

21 September 2018

Equipment Verification Results:

Testing Date:

17&18 December 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)		
2hr03min	12:20 ~ 14:23	18.0	1022.2	0.038	2533	20.7
2hr14min	09:11 ~ 11:25	18.1	1022.2	0.029	2601	19.4
2hr14min	11:33 ~ 13:47	18.1	1022.2	0.047	3232	24.2

Linear Regression of Y or X

Slope (K-factor):

0.0018

Correlation Coefficient

0.9816

Date of Issue

28 December 2018

Remarks:

- 1. **Strong** Correlation (R>0.8)
- Factor 0.0018 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.05 0.045 0.04 0.035 0.025 0.02 0.015 0.015 0.010 0.005 0 5 20 15 20 25 30

Operator :	Fai So	_ Signature : _	Jav	Date : _	28 December 2018
QC Reviewer:	Ben Tam	Signature :		Date :	28 December 2018

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Indu

Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Sep-18

Location ID: Calibration Room Next Calibration Date: 21-Dec-18

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1011.6 29.2

Corrected Pressure (mm Hg)
Temperature (K)

758.7 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

ı							100	
١	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
ı	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
١	18	5.4	5.4	10.8	1.632	56	55.56	Slope = 37.2548
١	13	4.3	4.3	8.6	1.459	48	47.62	Intercept = -5.5606
١	10	3.3	3.3	6.6	1.280	43	42.66	Corr. coeff. = 0.9970
١	8	2.1	2.1	4.2	1.025	34	33.73	
١	5	1.3	1.3	2.6	0.810	24	23.81	

Calculations :

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

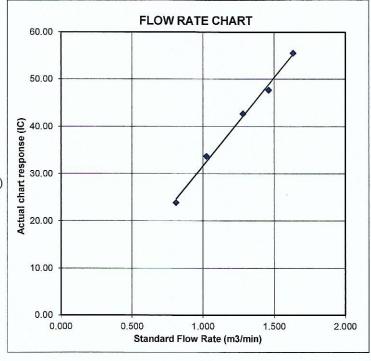
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

February 13, 2019

Pertificate of

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter 5/N: 438320

Ta: 293

°K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Pa: 763.3 mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524
	m=	2.02017		m=	1.26500
QSTD	b=	-0.03691	QA	b=	-0.02263
	r=	0.99988		r=	0.99988

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime
	For subsequent flow ra	ite calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AMS2
Calibrated by : P.F.Yeung
Date : 17/10/2019

Sampler

Model : TE-5170 Serial Number : S/N 3976

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

Service Date : 25 February 2019

 Slope (m)
 : 2.07076

 Intercept (b)
 : -0.02917

 Correlation Coefficient(r)
 : 1.00000

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1017 Ta(K) : 300

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.401	1.657	54	53.93
2	13 holes	9.2	3.029	1.477	50	49.93
3	10 holes	6.6	2.566	1.253	45	44.94
4	7 holes	4.4	2.095	1.026	38	37.95
5	5 holes	2.4	1.547	0.761	30	29.96

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Checked by: Magnum Fan Date: 21/10/2019

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AMS3C (Ying Tung Estate)

Calibrated by : P.F.Yeung
Date : 17/10/2019

Sampler

Model : TE-5170 Serial Number : S/N 3977

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

Service Date : 25 February 2019

 Slope (m)
 : 2.07076

 Intercept (b)
 : -0.02917

 Correlation Coefficient(r)
 : 1.00000

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1017 Ta(K) : 300

Resi	istance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.2	3.488	1.699	55	54.92
2	13 holes	9.4	3.062	1.493	50	49.93
3	10 holes	6.8	2.604	1.272	44	43.94
4	7 holes	4.4	2.095	1.026	37	36.95
5	5 holes	2.3	1.514	0.745	28	27.96

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):28.286 Intercept(b):7.475 Correlation Coefficient(r): 0.9987

Checked by: Magnum Fan Date: 21/10/2019

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AMS7B
Calibrated by : P.F.Yeung
Date : 17/10/2019

Sampler

Model : TE-5170 Serial Number : S/N 1060

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

Service Date : 25 February 2019

 Slope (m)
 : 2.07076

 Intercept (b)
 : -0.02917

 Correlation Coefficient(r)
 : 1.00000

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1017 Ta(K) : 300

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.430	1.678	54	53.93
2	13 holes	9.2	3.029	1.483	49	48.93
3	10 holes	6.5	2.546	1.247	45	44.94
4	7 holes	4.5	2.118	1.039	37	36.95
5	5 holes	2.3	1.514	0.745	28	27.96

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):27.769 Intercept(b):8.155 Correlation Coefficient(r): 0.9926

Checked by: Magnum Fan Date: 21/10/2019

RECALIBRATION
DUE DATE:

February 25, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 25, 2019

Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch

Pa: 762.0

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 2454

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4400	3.2	2.00
2	3	4	1	1.0200	6.4	4.00
3	5	6	1	0.9120	7.9	5.00
4	7	8	1	0.8700	8.8	5.50
5	9	10	1	0.7180	12.8	8.00

		Data Tabula	tion		
Vstd (m3)	Qstd (x-axis)	$ \sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)} $ (y-axis)	Va	Qa (x-axis)	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$ (y-axis)
1.0120	0.7028	1.4257	0.9958	0.6915	0.8784
1.0077	0.9880	2.0162	0.9916	0.9722	1.2423
1.0057	1.1028	2.2542	0.9896	1.0851	1.3889
1.0045	1.1546	2.3642	0.9885	1.1362	1.4567
0.9992	1.3916	2.8513	0.9832	1.3694	1.7569
	m=	2.07076		m=	1.29667
QSTD	b=	-0.02917	QA	b=	-0.01797
	r=	1.00000		r=	1.00000

	Calculation	s	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/∆Time	Qa= Va/ΔTime	
	For subsequent flow rat	e calculations:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa= 1/m ((√ΔH(Ta/Pa	a))-b)

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: clone	

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration :	24 July 2019	
Brand of Test Meter:	Davis	
Model:	Vantage Pro 2 (s/n: BB180328020)	
Location:	AMS3C	
Procedures:		
1. Wind Still Test:	The wind speed sensor was hold by hand un	ntil it keep still
2.Wind Speed Test:	The wind meter was on-site calibrated again	nst the Anemometer
3.Wind Direction Test:	The wind meter was on-site calibrated again	nst the marine compass at four directions
Results:		
Wind Still Test		

Wind Speed (m/s)
0.00

Wind	Speed	Test
W III U	Specu	1 001

Davis (m/s)	Anemometer (m/s)
1.3	1.4
2.2	1.9
4.5	5.1

Wind Direction Test

Davis (o)	Marine Compass (o)
271	270
1	0
89	90
180	180

Calibrated by:

Yeung Ping Fai

(Technical Officer)

Checked by:

Ho Kam Fat

(Senior Technical Officer)

輝創工程有限公司

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C193443

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC19-1283)

Date of Receipt / 收件日期: 21 June 2019

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No./型號

AM-4201

Serial No./編號

AF.27513

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 : --

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

2 July 2019

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

T F Lee

Assistant Engineer

Certified By

核證

H C Chan

Date of Issue

5 July 2019

Chan S發日期

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正談書

Certificate No.: (

C193443

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID CL386

Description

Multi-function Measuring Instrument

Certificate No.

S16493

4. Test procedure: MA130N.

5. Results:

Air Velocity

Applied	UUT	Measured Correction		
Value	Reading	Value Measurement Uncertainty		ertainty
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor
2.0	1.8	+0.2	0.2	2.0
4.0	3.8	+0.2	0.3	2.0
6.0	5.8	+0.2	0.3	2.0
8.1	7.9	+0.2	0.3	2.0
10.1	10.0	+0.1	0.4	2.0

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI090154

Date of Issue

02 October 2019

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

16H104233

Sep 27, 2019

Date of Received

Sep 27, 2019

Date of Calibration Date of Next Calibration(a)

Dec 26, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen Conductivity at 25°C APHA 21e 4500-O G APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance(e)(pH Unit)	Results
4.00	4.03	0.03	Satisfactory
7.42	7.44	0.02	Satisfactory
10.01	10.06	0.05	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10.0	10.0	0.0	Satisfactory
22.0	22.1	0.1	Satisfactory
42.0	42.2	0.2	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

- The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- The results relate only to the calibrated equipment as received
- The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.
- The "Tolerance Limit" mentioned is referenced to YSI product specifications.

LEE Chun-ning, Desmond Senior Chemist

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI090154

Date of Issue

: 02 October 2019

Page No.

: 2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.78	0.75	-0.03	Satisfactory
3.69	3.98	0.29	Satisfactory
5.77	5.4	-0.37	Satisfactory
7.68	7.82	0.14	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	138.9	-5.45	Satisfactory
0.01	1412	1380	-2.27	Satisfactory
0.1	12890	12834	-0.43	Satisfactory
0.5	58670	57663	-1.72	Satisfactory
1.0	111900	109858	-1.82	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.16	1.60	Satisfactory
20	20.38	1.90	Satisfactory
30	30.47	1.57	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.11	(100)	Satisfactory
10	9.89	-1.1	Satisfactory
20	19.82	-0.9	Satisfactory
100	97.25	-2.8	Satisfactory
800	780.16	-2.5	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

Remark(s): -

relevant international standards.

[~] END OF REPORT ~

⁽g) "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
(g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form

專業化驗有限公司 **OUALITY PRO TEST-CONSULT LIMITED**

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AI100183

Date of Issue

30 October 2019

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI 6920V2 (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

00019CB2

Date of Received

Oct 28, 2019

Oct 28, 2019

Date of Calibration Date of Next Calibration(a)

Jan 27, 2020

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen Conductivity at 25°C APHA 21e 4500-O G APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.95	-0.05	Satisfactory
7.42	7.36	-0.06	Satisfactory
10.01	9.93	-0.08	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
15.0	15.1	0.1	Satisfactory
25.0	24.9	-0.1	Satisfactory
35.0	34.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is referenced to YSI product specifications.

LEE Chun-ning, Desmond Senior Chemist

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

: AI100183

Date of Issue

30 October 2019

Page No.

: 2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
1.04	0.80	-0.24	Satisfactory
4.10	4.34	0.24	Satisfactory
5,92	5.94	0.02	Satisfactory
7.81	8.07	0.26	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	140.0	-4.70	Satisfactory
0.01	1412	1394	-1.27	Satisfactory
0.1	12890	12780	-0.85	Satisfactory
0.5	58670	57927	-1.27	Satisfactory
1.0	111900	110880	-0.91	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.90	-1.00	Satisfactory
20	19.88	-0.60	Satisfactory
30	29.89	-0.37	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.20	**	Satisfactory
10	9.98	-0.2	Satisfactory
20	19.88	-0.6	Satisfactory
100	100.20	0.2	Satisfactory
800	798.82	-0.1	Satisfactory

Tolerance limit of turbidity should be less than ±10.0 (%)

~ END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.